
ARMOR: Egocentric Perception for Humanoid Robot Collision Avoidance
and Motion Planning

Daehwa Kim1,∗ Mario Srouji2 Chen Chen2 Jian Zhang2

Fig. 1: ARMOR presents a novel egocentric wearable perception hardware and software system for humanoid robots (left).
Low-profile and distributed depth sensors enable comprehensive point cloud perception around the robot, and minimize
occlusions (right). With a data-driven motion planning policy, ARMOR-Policy, we are able to steer attention to specific
regions, and demonstrate effective and fast motion planning.

Abstract— Humanoid robots have significant gaps in their
sensing and perception, making it hard to perform motion plan-
ning in dense environments. To address this, we introduce AR-
MOR, a novel egocentric perception system that integrates both
hardware and software, specifically incorporating wearable-like
depth sensors for humanoid robots. Our distributed perception
approach enhances the robot’s spatial awareness, and facilitates
more agile motion planning. We also train a transformer-based
imitation learning (IL) policy in simulation to perform dynamic
collision avoidance, by leveraging around 86 hours worth of
human realistic motions from the AMASS dataset. We show
that our ARMOR perception is superior against a setup with
multiple dense head-mounted, and externally mounted depth
cameras, with a 63.7% reduction in collisions, and 78.7%
improvement on success rate. We also compare our IL policy
against a sampling-based motion planning expert cuRobo,
showing 31.6% less collisions, 16.9% higher success rate, and
26× reduction in computational latency. Lastly, we deploy our
ARMOR perception on our real-world GR1 humanoid from
Fourier Intelligence. We are going to update the link to the
source code, HW description, and 3D CAD files in the arXiv
version of this text.

I. INTRODUCTION

A. Motivation

The recent advancements in transformer architectures and
large language models [4], [23], [24] have revitalized both in-
terest and applications in humanoid robotics [7], [32]. There

1Carnegie Mellon University, daehwak@cs.cmu.edu
2Apple, {msrouji, cchen64, jianz}@apple.com
*Part of this work was done during an internship at Apple

are many challenges with humanoid robotic manipulation,
including concerns for collision avoidance and safety, many
degrees of freedom that make policy learning challenging,
and gaps in sensing and perception compared to human skin
and tactile feedback. We argue that the current perception
and sensing solutions for humanoid robots are not adequate
to cover the arms or hands, and do not take advantage of the
surface area of the robot.

Due to the mobile nature of humanoid robots, it is not
feasible to rely on multiple external cameras and third-person
perception like stationary bi-manual manipulators [34], [9],
[2]. The current paradigm of perception for humanoid robots
often involves a centralized camera and/or lidar with high-
resolution perception, mounted either in the head or torso
[32]. This perception strategy is easy to integrate, and can
have decent coverage given a wide field of view, or multiple
degrees of freedom neck; however there are still many
scenarios where occlusion is present to the arms and hands.
Tactile sensing is also integrated into some end effectors [22],
[10], [12], [14], however, this drives up the cost significantly,
and is hard to integrate in large quantities on humanoid robot
arms, and is still not a well-understood source of input in
policy learning.

We present ARMOR, a novel egocentric perception for
humanoid robotic manipulation and collision avoidance.
We distribute small, low-cost, low-power, Time of Flight
(ToF) lidar sensors [26] across the arms and hand of the
humanoid robot strategically to get a good field of view



coverage, as well as achieve the desired density of point
cloud. These sensors are low-profile and easy to integrate
onto humanoid robotic platforms, making them a scalable
sensing solution compared to tactile. We also eliminate many
occlusions that are present with existing head-mounted or
even external cameras. The sensors in our ARMOR percep-
tion have also been used in other applications such as map-
ping [16], collision avoidance [1], [8], and 3D reconstruction
[19], [21].

We use our ARMOR perception to perform collision
avoidance on a simulated and real GR1 humanoid robot from
Fourier Intelligence. We leverage recent work from ALOHA
and others [34] to learn a dynamic transformer-based motion
planner that we call ARMOR-Policy. In order to train our
imitation learning policy, we generate “expert” trajectories by
taking 311,922 human realistic motions (86.6 hours worth)
from the AMASS [20] dataset. We then re-target the human
arm joints from the data to the Fourier GR1 humanoid robot,
and create tight obstacles around the trajectories, resulting in
collision-free examples. For better collision avoidance, we
also perform a unique inference-time optimization where we
sample multiple trajectories.

Our extensive experiments show that our ARMOR per-
ception is superior when used in both sampling-based
and neural-based motion planners. When we deploy our
ARMOR-Policy with our ARMOR perception, we show
a 63.7% reduction in collisions, and 78.7% improvement
in success rate when compared with an identical policy
using four head-mounted, and externally mounted depth
cameras (exocentric perception). We also show that our
ARMOR-Policy has 31.6% less collisions, and 16.9%
higher success rate, while being nearly 26× more compu-
tationally efficient than the sampling-based motion planning
expert cuRobo [29]. Finally we provide numerous qualitative
examples of our ARMOR perception, and ACT policy to
demonstrate their efficacy in difficult planning scenarios.

II. RELATED WORK

A. Collision-free Motion Planning

Generating collision-free trajectories for execution is cru-
cial for the safe deployment of general-purpose robotic
systems. Humanoid robots, among other systems, are par-
ticularly challenging due to their high degrees of freedom in
the control space.

Various sample- and optimization-based algorithms have
been proposed to tackle collision-free planning problems.
These methods often involve a dedicated planner that gen-
erates a trajectory, given a collision cost function, either
minimizes the cost as part of the optimization objective
or prunes and biases the sampling. Popular choices of the
collision cost include potential field methods [6], signed
distance fields (SDF) [3], [29], [13], and control barrier
functions (CBF) [25], [30], [31].

Other works have also explored learning-based methods
through reinforcement learning (RL). The ATACOM method
[17], [18] frames the collision avoidance problem as a
manifold optimization problem through constraint manifold

theory, and uses it to bound the safety of actions as part of
the RL learning. SAFER [27], on the other hand, combines
RL with a sample-based algorithm and uses RL to prune
the sample space as a runtime optimization to balance task
success rate and safety. Our work differs from existing
methods by distilling an imitation learning (IL) policy in
simulation from an expert motion planner. This allows us
to derive a scalable data-driven collision-aware policy that
generalizes across different tasks and embodiments (e.g.
different robot or sensor configurations).

More recently, training collision avoidance policy has been
demonstrated with learning from vast amounts of experience
(i.e., imitation learning). MπNets [5] and MPNet [3] train the
neural motion planning policy for a robot manipulator arm
on several millions of instances using synthetically generated
procedural task scenes. Our ARMOR-Policy also employs
imitation learning to train the policy in our case study, albeit
our perception hardware and data generation pipeline are
specifically optimized for humanoid robotic arms. In contrast
to other systems that rely on externally mounted cameras,
our perception hardware is egocentric and entirely mobile.
Additionally, our motion generation is derived from human
motion data (e.g., manipulations, social behaviors, dance,
etc) rather than task-specific actions as earlier work focused
(e.g., pick-and-place operations). Our hope is that this will
more closely resemble motions that humanoid robots are
likely to do in real-world environments.

B. Egocentric Perception

The aforementioned collision-aware motion planning
methods often require accurate perception of the robot and
surrounding objects in a fixed world frame as the input,
which necessitates the use of sensors such as an RGB-D
camera, or depth sensors mounted external to the robot.
For humanoid robots with locomotion capability, requiring
external sensors could significantly limit the application
scenario of the robot, therefore egocentric sensors are usually
desirable. While some methods can take egocentric sensor
inputs [3], their collision avoidance performance is often
significantly impacted by the limited field-of-view (FoV) of
the sensor and occlusions, e.g. head-mounted camera. Our
work relies on egocentric and distributed ToF sensors that
are strategically mounted around the body to form a nearly
occlusion-free view of the surrounding environment, thus
eliminating the need for any external sensors. Recent data-
driven bi-manual humanoid robot control policies use ego-
centric vision as input for policy generation [33], [15]. Due to
the complexity of humanoid control, most work focuses only
on task performance assuming no task-irrelevant obstacles.
Using our low-cost, high-coverage, and yet low-dimensional
sensor constellation, we envision ARMOR could be inte-
grated into high-level manipulation policies and ensure safe
task completion.

C. Use of Time of Flight (ToF) Sensors for Robotic Safety

There was prior work [1], [8] that leveraged a similar
array of ToF lidar as proximity sensors (single point) for



Fig. 3: ARMOR’s egocentric perception hardware in simu-
lation (left), and deployed on the real robot (right).

safe Human Robot Interaction, while employing a simple
heuristic-based collision avoidance strategy. However, in our
work we leverage zone-array-based ToF sensors for more
fine-grained and dense obstacle representation and pair this
with a more generalizable transformer-based learned policy.

III. METHOD

A. Egocentric Perception Hardware

Unlike centralized RGBD cameras that capture full details
in a single dense frame, our approach distributes sparse
perception across multiple sensors. This maximally leverages
the attention heads of our ARMOR-Policy to attend to
different sensor inputs to more effectively plan collision-free
trajectories, while being robust to occlusion.

We chose the SparkFun VL53L5CX time-of-flight (ToF)
lidar [26] for its coarse, yet lightweight, commercially avail-
able, and scalable properties. This sensor has a compact
dimension of 6.4 × 3.0 × 1.5 mm. The sensor runs at 15 Hz
(up to 30 hz in certain configurations) with 8 × 8 resolution
of an image, and it captures depth in a 63° diagonal field-
of-view and 4000 mm range. Ideally, one can integrate these
sensors directly into a humanoid robot’s hardware platform,
however, for purposes of this work, we attempted to create
a solution that can be applied to any humanoid robot using
off-the-shelf components.

To demonstrate our sensor constellation, we strategically
placed 40 sensors on a Fourier GR1 humanoid robot’s arms
(20 on each arm - Figure 3 left). A group of four sensors is
connected to the XIAO ESP microcontroller [28], and is read
over the I2C bus. Then, each microcontroller streams over
USB to the onboard computer (Jetson Xavier NX) of our
robot. Finally, the sensor data is wirelessly streamed over
the socket and is processed on a Linux machine with an
NVIDIA GeForce RTX 4090 GPU. This ensures the stream
can run at 15 Hz even with multiple sensors.

B. ARMOR-Policy

Our ARMOR-Policy is based on a transformer encoder-
decoder architecture similar to action chunking transformers
(ACT) [34], using sequence modeling to imitate the expert
(i.e., collision-free human motion demonstrations). We train
our policy π(·) as a generative model to predict the sequence
of actions at+k conditioned on the current joint state qt, goal

Fig. 4: ARMOR-Policy’s neural motion planner network
architecture. Left: The Behavior Encoder compresses action
sequences into style variable z, which is later used for diverse
output sampling. Right: We implemented the policy decoder
to take depth images as input. The depth image is in the lidar
camera frame.

joint g positions, observations ot from the multiple ToF lidar,
and latent variable z.

Motion planning can yield multiple solutions (e.g., there
can be more than one path to avoid obstacles), and our policy
should be able to model these behavior sequences. For this
reason, we leverage an additional encoder layer to infer the
latent variable z. The inputs to the encoder are the current
joint position and the target action sequences. This encoder
is used to train the transformer policy to generate different
motion trajectory candidates by adjusting z. This flow is
illustrated on the left side (‘Behavior Encoder’) of Figure
4. This allows us to perform an inference-time optimization
where we sample multiple trajectories, as described in sec-
tion III-C.

Our policy takes the latent variable z, current and goal
joint positions, and ToF lidar sensor values as input. The
current and goal joints together are a 28-dimensional vector
(14 DoF for two arms). We feed each ToF lidar sensor
reading in its respective ego-frame into the network. This
architecture is shown in the right of Figure 4. The depth
observation includes 40 gray-scale depth images, each with
8 × 8 resolution. The depth images pass the modified mono-
channel ResNet18 backbones [11] (with the first layer’s
weights averaged), which extracts 512 features. Finally, the
transformer policy outputs the k action sequences, a k
× 14 vector. This entire architecture yields around 84M
parameters.

C. Inference Time Optimization

To ensure safe motion plans as in other prior work [3], [5],
we implemented a lightweight inference time optimization.
As we mentioned earlier, there can be multiple solutions for
collision-free planning, and the ARMOR-Policy is trained
to be able to output multiple solutions by adjusting the
latent variable z. We batch compute N candidate trajectories
through the use of the latent style variable z, by sampling
from random posterior distributions. This step is computed in
parallel on the GPU, and adds negligible additional latency



Fig. 5: Three data generation strategies. In collision-avoidance motion, a 1-second sequence of human motion in the AMASS
dataset is used as a motion planning expert, and the obstacles are placed tightly around, but not colliding with, the motion
trajectory. In an emergency stop, the goal pose is randomly chosen inside of the obstacle location. In collision-free motion,
we remove all obstacles and linearly interpolate the trajectory from the initial pose to the goal.

during inference. Given multiple output trajectories, we find
the optimal path with the least robot-to-point cloud (PCL)
distance by using the signed distance function (SDF ).
Specifically, the optimization process is formulated as such:

min

t=T∑
t=1

k=K∑
k=1

{1/SDFqt(PCLk)} (1)

where T is the action horizon, K is the number of points in
the point cloud, and q is the joint position.

D. Motion Planning Expert Data Generation

Our core pipeline employs imitation learning. The data
includes the current arm pose, a goal arm pose, and envi-
ronmental obstacles in the form of a simulated point cloud.
While other prior work focused on generating motion data
in specific task environments (e.g., shelves, cabinets, table,
etc) [3], our pipeline attempts to learn a set of general
manipulation motions around obstacles to avoid over-fitting
in specific task environments. We created 311,922 synthetic
motion trajectories (86.6 hours worth) using the Archive of
Motion Capture as Surface Shapes (AMASS) dataset [20],
as this data includes diverse human poses that are relevant
to robot tasks (e.g., manipulation, dance, social actions,
etc). We use these human action trajectories in the AMASS
dataset as motion planning expert paths. Just as one might
give a narrow environment, and ask the demonstrator to
move their arms without colliding, we conversely generate
tight obstacles around the re-targeted human trajectory, while
ensuring there is no collision with the path.

We re-target the human arm poses from AMASS to
humanoid robot joint configurations specific to the Fourier
GR1 humanoid. The AMASS dataset provides a joint angle
around each axis in a rotation vector. We use the arm-related
joint angles (collar, shoulder, elbow, wrist, and fingers). Each
motor of the elbow and wrist in our humanoid robot’s arm
can use the axis angle directly, as each motor rotates around
a single axis. However for the shoulder motors, we use
heuristics to combine the angles from both the collar and
the shoulder.

We generate demonstration data via three different strate-
gies as shown in Figure 5: collision-avoidance, emergency-
stop, and collision-free motions. During collision avoidance

motions, we use a 1-second future of the current pose
in the data sequence as the goal pose, and playback the
entire 1-second target action sequence with random obstacles
generated around the trajectory, but without actual collision.
During stop motions, we set the last goal position to a
random location lying inside of an obstacle, which always
leads the arm to collide. Lastly, in free motion, the goal pose
is the 1-second future, similar to collision avoidance motions,
but we removed all obstacles and the expert motion trajectory
is linearly interpolated between the current pose and the goal
pose.

IV. CASE STUDY: COLLISION-FREE MOTION PLANNING

Here as a case study, we evaluate our ARMOR perception,
and ARMOR Action Chunking Transformers (ACT) policy
as a collision-free bi-manual motion planner for humanoid
robots. The experiments aim to evaluate both hardware and
software contributions of ARMOR by examining several key
aspects: the advantages of ARMOR’s egocentric perception
approach for collision avoidance and the effectiveness of
our ACT policy’s neural motion planner architecture for
egocentric perception.

A. Experimental Setup
We conduct evaluations in simulation with two different

perception configurations: egocentric ARMOR sensor con-
stellations, and external cameras. For egocentric ARMOR
sensor constellations, VL53L5CX ToF depth sensors are
positioned in 20 different locations on each arm as described
in Section III-A and Figure 3. For external cameras, we
simulate the Intel RealSense D435 due to its popularity in
prior work [3]. This camera has a wider field of view (87°
× 58°), and significantly higher resolution (1280 × 720)
than the VL53L5CX ToF (8 × 8). Similar to the setup in
Neural MP [3], four D435 cameras are installed on and
around the robot: one on the head and three at head height
positioned to the left, right, and front. Hence while we
term this camera setup as exocentric, we still included a
head-mounted “egocentric” camera for fair comparison. All
cameras are tilted 45° downward to cover the arm’s range of
motion (Figure 6 Exocentric).

We trained our ARMOR ACT policies on 311,922 syn-
thetically generated motions (86.6 hours), and validated them



Fig. 6: Experiment setup. The yellow geometries indi-
cate depth cameras, Intel RealSense D435 (Exocentric) and
VL35L5CX ToF sensor (Egocentric).

on another 66,840 instances (18.6 hours). In the experimental
evaluations below, we only keep the motion sequences where
a solution exists, and that have obstacles in the scene (i.e.,
Collision-Avoidance Motions in Figure 5). This yields 22,280
motion sequences (6.2 hours) for testing.

B. Results

In this section, we compare our ARMOR egocentric
perception hardware to the exocentric setup described
above, data-driven ARMOR ACT policy (ACT-Depth) to a
sampling-based motion planner cuRobo [29], and evaluate
the benefits of our inference time optimization strategy
when combined with the ACT policy (ARMOR-Policy). We
use three metrics for comparison: the number of robot-to-
obstacle contacts that resulted in a collision, the number of
successful sequences that reached the goal pose, and infer-
ence computation time. A successful goal pose is defined as
the end effector (i.e., hand) reaching within 10 cm of the
target position.

To calculate cuRobo’s computation time, we first prune
any point clouds that are not reachable by the arm or cause
self-collision. This still leaves too many points with external
cameras, which makes the cuRobo computation intractable.
To resolve this issue, we did additional pruning in denser
areas, and kept a maximum of 10,000 points from the original
∼3.7M points. In contrast, we did not have these computation
issues with our ARMOR ACT policy due to the increased
efficiency of using neural-based planning.

Both the collision and the success metrics are listed as
a percentage improvement relative to a baseline, which is
described in more detail in the below subsections. Our results
will show that the policies that use our ARMOR percep-
tion have superior collision avoidance and success rates.
In addition, we will show that using neural-based motion
planning with our ARMOR ACT policy enjoys superior
inference computation time, which is critical for dynamic

collision avoidance, and proves to be an effective method
for leveraging our ARMOR perception yielding the best
combination of results.

(a) Egocentric ARMOR v.s. Exocentric
Policy Collision (↓) Success (↑) Comp. time (↓)

cuRobo 38.7% ↓ 11.9% ↑ 1300 ms
ACT-Depth 55.0% ↓ 76.3% ↑ 50 ms
ARMOR-Policy 63.7% ↓ 78.7% ↑ 240 ms

(b) Neural Policy v.s. Sample based
Policy Collision (↓) Success (↑) Comp. time (↓)

ACT-Depth 31.6% ↓ 16.9% ↑ 50 ms

(c) With v.s Without Inference Time Optimization
Policy Collision (↓) Success (↑) Comp. time (↓)

ARMOR-Policy 19.4% ↓ 1.4% ↑ 240 ms

TABLE I: The summary of results. We report the percentage
improvement relative to the baseline setup in each of the
following: (a) Comparing the ARMOR egocentric percep-
tion to the baseline exocentric D435 perception setup. (b)
Comparing our ACT policy to the cuRobo motion planner.
(c) Comparing the performance improvement by adding our
inference time optimization.

Egocentric ARMOR v.s. Exocentric Perception. We
compare the performance of ARMOR’s egocentric percep-
tion system to the exocentric camera setup across three
policies: one sampling-based policy (cuRobo [29]), our
data-driven transformer-based [34] policy (ACT-Depth), and
ACT-Depth with our inference time optimization (ARMOR-
Policy). Table I (a) summarizes the performance improve-
ments by percentage relative to the exocentric perception
setup for each policy. Across all three policies, ARMOR’s
egocentric perception outperforms traditional exocentric per-
ception. For example, when our ARMOR-Policy uses AR-
MOR perception, collisions are reduced by 63.7%, and suc-
cess is increased by 78.7% compared to the exocentric equiv-
alent. Even in our ACT-Depth policy where no inference
time optimization is performed, we still see almost similar
improvements on both collision avoidance and success.

Figure 7 also illustrates a specific example where exocen-
tric perception can fail inside of a cluttered environment,
similar to reaching inside of a drawer or a cabinet. In
cases like these, egocentric perception such as ARMOR
can allow for more nimble motion planning, especially for
high degrees of freedom humanoid robot arms, due to the
increased visibility and reduced occlusion where it matters
most (alongside the arms).

ARMOR ACT Policies v.s. Sampling-based Baseline
Policy. After verifying that our ARMOR perception sys-
tem outperforms exocentric perception, we compared our
transformer-based ARMOR ACT policy to the sampling-
based cuRobo baseline. We set the parameters for cuRobo to
be the default they describe in [29], except we changed the
number of waypoints for trajectory optimization to be the
same as our transformer model’s output. Our testing dataset



Fig. 7: An example of how our ARMOR perception resolves
occlusion issues that present in exocentric perception. The
visible area from each perception system is visualized as a
point cloud in blue. The arrow on the top of the robot head
indicates a frame with collision. ARMOR can effectively
capture the area around the body (top-left zoomed-in circle)
in a cluttered environment. The exocentric perception has
a significantly higher resolution, however, it still has many
occlusions to both the scene, and the robot’s body (bottom
red area).

is quite challenging; it contains tight, and cluttered obstacles
around the ground truth motion paths, and we also simulate
the sensor noise. Because of this, cuRobo often could not
find a solution (for 64% of the evaluation data). Hence, we
only use the sequences where cuRobo was able to find a
solution when comparing the collision avoidance results with
our ARMOR ACT policy for fairness.

Table I (b) shows the performance improvement of our
ACT policy without the inference time optimization (ACT-
Depth), in comparison to the cuRobo baseline. Both setups
are using our ARMOR perception. Our ACT-Depth policy
outperforms cuRobo, where collisions are reduced by 31.6%,
and the success instances are increased by 16.9%. It is also
noteworthy that the computation of our ACT-Depth policy is
about 26× faster (50 ms) than cuRobo (∼ 1300 ms).

Figure 8 also illustrates a specific case where our ACT
policy outperforms cuRobo. Though our ARMOR perception
is sparse, our neural policy is able to effectively infer the
gap, and builds proper spatial understanding to avoid the
obstacles. However, the sampling-based baseline method
accepts the point clouds as-is, and causes collision in the
areas that are not explicitly visible.

Benefits of Inference-time Optimization. As described
in Section III-C, our ARMOR-Policy has a lightweight
inference time optimization. Compared to our ACT policy
without the inference time optimization (ACT-Depth), our
ARMOR-Policy in Table I (c) shows a further reduction in
collisions by 19.4%, and increases the success rate by 1.4%
compared to ACT-Depth.

Real-World Deployment. We deployed our ARMOR
perception with 28 ToF lidars on the Fourier GR1 humanoid.

Fig. 8: Example of how our ARMOR ACT policy outper-
forms cuRobo. Both policies use our ARMOR perception.
The arrow on the top of the robot head indicates a frame
that contains collision. Despite the sparse perception, our
ARMOR ACT policy successfully avoids collisions with
obstacles (top). The conventional sampling-based planners
fail to infer complete obstacle geometry, and hence generate
collision-prone paths (bottom).

We demonstrated a real-time roll-out of the ARMOR-Policy
in a loop for collision avoidance, and update the trajectory at
15-Hz. (ToF lidar update frequency). We will be releasing a
link to our ARMOR perception HW+code, ARMOR-Policy
code, as well as a video to help in replicating our setup on
a real robot in the arXiv version of this text.

V. CONCLUSION

We present ARMOR, a novel perception system that lever-
ages wearable sensors for humanoid robotic manipulation
to achieve occlusion-free egocentric perception. ARMOR
includes both hardware and software contributions. Our low-
profile wearable sensor system for humanoid robots enables
skin-like distributed receptors and a low-level ARMOR-
Policy motion planner for nimble robotic motion trajec-
tories. Our case study showed that ARMOR-Policy can
work as a computationally efficient collision-free motion
planner in challenging environments. We also demonstrated
the effectiveness of egocentric distributed lidar perception in
comparison to exocentric cameras. For future work, we hope
to leverage our ARMOR perception in dexterous humanoid
robotic manipulation tasks, as well as hope that the robotic
community continues to expand upon these concepts to
further advance the capability of mobile humanoid robots.



REFERENCES

[1] Colette Abah, Andrew Orekhov, Garrison Johnston, Peng Yin, Howie
Choset, and Nabil Simaan. A multi-modal sensor array for safe human-
robot interaction and mapping. In 2019 International Conference on
Robotics and Automation (ICRA), pages 3768–3774, 05 2019.

[2] Rohan Chitnis, Shubham Tulsiani, Saurabh Gupta, and Abhinav Gupta.
Efficient bimanual manipulation using learned task schemas. In 2020
IEEE International Conference on Robotics and Automation (ICRA),
pages 1149–1155, 2020.

[3] Murtaza Dalal, Jiahui Yang, Russell Mendonca, Youssef Khaky, Rus-
lan Salakhutdinov, and Deepak Pathak. Neural mp: A generalist neural
motion planner. September 2024.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding, 2019.

[5] Adam Fishman, Adithyavairavan Murali, Clemens Eppner, Bryan
Peele, Byron Boots, and Dieter Fox. Motion policy networks. In
Karen Liu, Dana Kulic, and Jeff Ichnowski, editors, Proceedings of
The 6th Conference on Robot Learning, volume 205 of Proceedings
of Machine Learning Research, pages 967–977. PMLR, 14–18 Dec
2023.

[6] Fabrizio Flacco, Torsten Kröger, Alessandro De Luca, and Oussama
Khatib. A depth space approach to human-robot collision avoidance.
pages 338–345, Saint Paul, MN, USA, 2012. IEEE.

[7] Zipeng Fu, Qingqing Zhao, Qi Wu, Gordon Wetzstein, and Chelsea
Finn. Humanplus: Humanoid shadowing and imitation from humans.
In Conference on Robot Learning (CoRL), 2024.

[8] Francesco Giovinazzo, Francesco Grella, Marco Sartore, Manuela
Adami, Riccardo Galletti, and Giorgio Cannata. From cyskin to
proxyskin: Design, implementation and testing of a multi-modal
robotic skin for human–robot interaction. Sensors, 24(4), 2024.

[9] Jennifer Grannen, Yilin Wu, Brandon Vu, and Dorsa Sadigh. Stabilize
to act: Learning to coordinate for bimanual manipulation. In Jie Tan,
Marc Toussaint, and Kourosh Darvish, editors, Proceedings of The
7th Conference on Robot Learning, volume 229 of Proceedings of
Machine Learning Research, pages 563–576. PMLR, 06–09 Nov 2023.

[10] Siddhant Haldar, Zhuoran Peng, and Lerrel Pinto. Baku: An efficient
transformer for multi-task policy learning, 2024.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

[12] Carolina Higuera, Akash Sharma, Chaithanya Krishna Bodduluri,
Taosha Fan, Patrick Lancaster, Mrinal Kalakrishnan, Michael Kaess,
Byron Boots, Mike Lambeta, Tingfan Wu, and Mustafa Mukadam.
Sparsh: Self-supervised touch representations for vision-based tactile
sensing, 2024.

[13] Huang Huang, Balakumar Sundaralingam, Arsalan Mousavian,
Adithyavairavan Murali, Ken Goldberg, and Dieter Fox. Diffusion-
seeder: Seeding motion optimization with diffusion for rapid motion
planning. October 2024.

[14] Mike Lambeta, Tingfan Wu, Ali Sengul, Victoria Rose Most, Nolan
Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn,
Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake
Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira,
Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik,
and Roberto Calandra. Digitizing touch with an artificial multimodal
fingertip, 2024.

[15] Jinhan Li, Yifeng Zhu, Yuqi Xie, Zhenyu Jiang, Mingyo Seo, Georgios
Pavlakos, and Yuke Zhu. Okami: Teaching humanoid robots manipu-
lation skills through single video imitation. October 2024.

[16] Yijin Li, Xinyang Liu, Wenqi Dong, Han Zhou, Hujun Bao, Guofeng
Zhang, Yinda Zhang, and Zhaopeng Cui. Deltar: Depth estimation
from a light-weight tof sensor and rgb image, 2022.

[17] Puze Liu, Haitham Bou-Ammar, Jan Peters, and Davide Tateo. Safe
reinforcement learning on the constraint manifold: Theory and appli-
cations. April 2024.

[18] Puze Liu, Kuo Zhang, Davide Tateo, Snehal Jauhri, Zhiyuan Hu,
Jan Peters, and Georgia Chalvatzaki. Safe reinforcement learning
of dynamic high-dimensional robotic tasks: Navigation, manipulation,
interaction. September 2022.

[19] Xinyang Liu, Yijin Li, Yanbin Teng, Hujun Bao, Guofeng Zhang,
Yinda Zhang, and Zhaopeng Cui. Multi-Modal Neural Radiance
Field for Monocular Dense SLAM with a Light-Weight ToF Sensor.
Technical report, August 2023. arXiv:2308.14383 [cs] type: article.

[20] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-
Moll, and Michael J. Black. AMASS: Archive of motion capture
as surface shapes. In International Conference on Computer Vision,
pages 5442–5451, October 2019.

[21] Fangzhou Mu, Carter Sifferman, Sacha Jungerman, Yiquan Li, Mark
Han, Michael Gleicher, Mohit Gupta, and Yin Li. Towards 3D Vision
with Low-Cost Single-Photon Cameras. Technical report, March 2024.
arXiv:2403.17801 [cs, eess] type: article.

[22] Venkatesh Pattabiraman, Yifeng Cao, Siddhant Haldar, Lerrel Pinto,
and Raunaq Bhirangi. Learning precise, contact-rich manipulation
through uncalibrated tactile skins, 2024.

[23] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
Improving language understanding by generative pre-training. 2018.

[24] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu.
Exploring the limits of transfer learning with a unified text-to-text
transformer. CoRR, abs/1910.10683, 2019.

[25] Andrew Singletary, William Guffey, Tamas G. Molnar, Ryan Sinnet,
and Aaron D. Ames. Safety-Critical Manipulation for Collision-Free
Food Preparation. Technical report, May 2022. arXiv:2205.01026 [cs,
eess] type: article.

[26] SparkFun. Qwiic mini tof imager - vl53l5cx, 2024. Accessed: 2024-
10-21.

[27] Mario Srouji, Hugues Thomas, Hubert Tsai, Ali Farhadi, and Jian
Zhang. SAFER: Safe Collision Avoidance using Focused and Efficient
Trajectory Search with Reinforcement Learning. Technical report,
June 2023. arXiv:2209.11789 [cs] type: article.

[28] Seeed Studio. Xiao esp32s3, 2024. Accessed: 2024-10-21.
[29] Balakumar Sundaralingam, Siva Kumar Sastry Hari, Adam Fishman,

Caelan Garrett, Karl Van Wyk, Valts Blukis, Alexander Millane, Helen
Oleynikova, Ankur Handa, Fabio Ramos, Nathan Ratliff, and Dieter
Fox. Curobo: Parallelized collision-free robot motion generation. In
2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 8112–8119, 2023.

[30] Akshay Thirugnanam, Jun Zeng, and Koushil Sreenath. Safety-
Critical Control and Planning for Obstacle Avoidance between Poly-
topes with Control Barrier Functions. Technical report, May 2022.
arXiv:2109.12313 [cs, eess, math] type: article.

[31] Mingxin Yu, Chenning Yu, M.-Mahdi Naddaf-Sh, Devesh Upadhyay,
Sicun Gao, and Chuchu Fan. Efficient Motion Planning for Ma-
nipulators with Control Barrier Function-Induced Neural Controller.
Technical report, April 2024. arXiv:2404.01184 [cs] version: 1 type:
article.

[32] Yanjie Ze, Zixuan Chen, Wenhao Wang, Tianyi Chen, Xialin He,
Ying Yuan, Xue Bin Peng, and Jiajun Wu. Generalizable humanoid
manipulation with improved 3d diffusion policies. arXiv preprint
arXiv:2410.10803, 2024.

[33] Yanjie Ze, Zixuan Chen, Wenhao Wang, Tianyi Chen, Xialin He,
Ying Yuan, Xue Bin Peng, and Jiajun Wu. Generalizable humanoid
manipulation with improved 3d diffusion policies. October 2024.

[34] Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn.
Learning fine-grained bimanual manipulation with low-cost hardware,
2023.


	Introduction
	Motivation

	Related Work
	Collision-free Motion Planning
	Egocentric Perception
	Use of Time of Flight (ToF) Sensors for Robotic Safety

	Method
	Egocentric Perception Hardware
	ARMOR-Policy
	Inference Time Optimization
	Motion Planning Expert Data Generation

	Case Study: Collision-Free Motion Planning
	Experimental Setup
	Results

	Conclusion
	References

