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ABSTRACT
Handheld controllers are an essential part of VR systems. Modern
sensing techniques enable them to track users’ finger movements
to support natural interaction using hands. The sensing techniques,
however, often fail to precisely determine whether two fingertips
touch each other, which is important for the robust detection of
a pinch gesture. To address this problem, we propose AtaTouch,
which is a novel, robust sensing technique for detecting the closure
of a finger pinch. It utilizes a change in the coupled impedance of an
antenna and human fingers when the thumb and finger form a loop.
We implemented a prototype controller in which AtaTouch detects
the finger pinch of the grabbing hand. A user test with the prototype
showed a finger-touch detection accuracy of 96.4%. Another user
test with the scenarios of moving virtual blocks demonstrated low
object-drop rate (2.75%) and false-pinch rate (4.40%). The results
and feedback from the participants support the robustness and
sensitivity of AtaTouch.
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1 INTRODUCTION
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Figure 1: AtaTouch precisely detects the touches of two fin-
gertips and supports a robust pinch gesture input on VR in-
teraction (A). AtaTouch utilizes the change in antenna re-
turn loss when human fingers form a loop (B, C).

Handheld controllers are an essential part of virtual reality (VR) sys-
tems because they enable precise tracking of the hand, immersive
interaction through haptic feedback, and auxiliary inputs through
buttons, thumbsticks, and triggers. While retaining these advan-
tages of the controllers, modern sensing techniques have enabled
the controllers to support natural interaction using gestures (e.g.,
Facebook’s Oculus Touch [19], Valve Index Controller [10], and
Tactual Labs [23]). Hand gestures such as a pinch gesture enable
users to manipulate objects dexterously, grabbing and moving small
virtual blocks, clicking a button, and controlling a slide bar [13].
Further, a simple thumb and finger pinch interaction was reported
to be useful in comfortable virtual text entry methods [4, 12].

Many researchers have studied finger tracking and hand gesture
detection using cameras. However, vision-based methods of finger
tracking have a drawback in a VR environment because a VR con-
troller occludes the finger movements while the controller is an
essential part of VR interactions [3]. Human–computer interaction
(HCI) studies have actively explored approaches for solving the
finger-occlusion problem, ranging from leveraging the change in
the back of the hand [15, 16, 22, 29, 48], wrist [11, 14, 20, 32, 50],
or arm [21, 39, 40, 44], modifying the handheld controller with
capacitive sensors [3], to harnessing bio-acoustic signals [2, 17, 24].
However, their objective was to detect the overall shapes of hand
gestures, but often fail to precisely detect whether two fingertips
touch each other or not, which is important for the robust detection
of a pinch gesture. This sensing limitation causes users to perform
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exaggerated trajectories [51]; they open their fingers wide apart
and close them strongly.

Therefore, we propose AtaTouch (at a touch), which is a novel,
precise, robust, and sensitive technique to detect the closure state
of pinching fingers by using the fingers as an impedance-matching
component of an antenna. Our approach leverages a change in
the return loss of an antenna when human fingers make a loop
(Figure 1 B, C). Therefore, AtaTouch enables users to effortlessly
perform pinch gestures. We designed a prototype VR controller
with AtaTouch inside and verified that it could detect the finger
pinching state of the hand that held the controller.

The remainder of this paper is structured as follows. We review
related work and describe AtaTouch’s sensing principle. We then
describe the AtaTouch prototype and quantify its accuracy, robust-
ness, and sensitivity through an accuracy test and user studies
with common VR application scenarios. Finally, we discuss the
possibilities and limitations of our approach.

2 RELATEDWORK
The objective of our work is to detect the pinch gesture leveraging
RF signals on the human body. Therefore, we introduce previous
sensing techniques for finger tracking and gesture detection. Subse-
quently, we describe sensing techniques that use the human body
and RF signals.

2.1 Sensing Techniques for Finger Tracking
and Gesture Detection

Many researchers have studied hand tracking using RGB and depth
cameras [5, 34–36]. Oculus Quest supports bare hand tracking using
cameras in the headset [13]. However, depending on the hand posi-
tion and orientation, the fingertips are occluded by the back of the
hand or other fingers, and the vision-based approach fails to reliably
fingertip touches. In addition, while handheld controllers are essen-
tial devices for VR environments, the occlusion of the fingers by the
controllers makes vision-based finger-tracking more challenging
[3]. The use of depth information is one of the options, but the
noise captured by a depth camera makes touch-detection problems
difficult [46, 51]. Modifying the camera location is another option
[7, 31], but this solution may suffer from problems of finger oc-
clusion, and some light conditions may make finger-segmentation
more difficult [51].

HCI studies have addressed the finger-occlusion problem. One
approach utilizes the skin deformation of the back of the hand using
wearable photo reflective sensors [22], strain gauge sensors [29],
capacitive sensors [15, 16], and a camera [48]. Although skin defor-
mation implies movements of the fingers, these sensing techniques
have large mean Euclidean finger tracking errors of the index and
thumb [22], often resulting in a pinch detection error.

Another approach utilized the internal change of the wrist or
arm when a pinch gesture is performed. For example, tomography
of electrical impedance [50, 52], and near-infrared diffusion [32]
measured internal changes in the tissues of the wrist. Electrical
signals, generated from movements of the arm and wrist muscles,
were measured and analyzed via electromyography (EMG) to rec-
ognize hand gestures [20, 39, 40, 44]. Some studies measured the

changes in skin contour using force-sensitive resistors [11], air-
pressure sensors [21], and photo reflectors [14]. However, these
sensing approaches may not distinguish the flexion of the fingers
from the finger pinch, which is important for the robust detection
of a pinch gesture.

Direct modification of the handheld controller with capacitive
sensors was explored. Oculus Touch controllers have capacitive
sensors on buttons and provide thumbs-up gestures and pointing
gestures with the index [19, 42]. Arimatsu et al. [3] implemented
capacitance-sensing electrodes that cover the surface of the con-
troller to track fingers grabbing the controller. However, Arimatsu
et al. mentioned that their method made the gap between the actual
and estimated hand poses and caused users to experience difficulty
in performing a pinching action.

Bioacoustic signals generated when users perform pinching and
tapping were measured by a piezoelectric microphone [2], a smart-
watch accelerometer [2], and multiple-cantilevered piezo films [17].
However, users have to pinch their fingers strongly to create enough
bioacoustic signals and users get fatigued easily. FingerPing [49]
recognized thumb touches by analyzing acoustic resonance fea-
tures that travel through the hand from a thumb-worn speaker.
However, wearing a ring and a wrist band in addition to holding
the VR controller could be cumbersome for VR interactions.

2.2 Sensing Techniques using Human Body
and RF signals

Some prior studies utilized the human body as an electrical trans-
mission medium [25, 41, 51, 53]. These studies have two common
separate components: a signal emitter and a receiver attached to
the wrist and head [51, 53], two people’s wrists [41], or a wrist and
an object [25]. For example, ActiTouch [51] enabled precise on-skin
touch segmentation by emitting and receiving RF waves through
the human body when the two arms form a loop. The transmitter
and receiver were separated on a wristband and a headset, respec-
tively. They tried integrating both the receiver and transmitter in
one wristband, but the signal-to-noise ratio was poor in that con-
figuration. Although they did not explore their method for the loop
formation of fingers, their findings imply that their approach to
emit and receive an RF signal through the hand requires two sepa-
rate devices on a finger and an extra body part to detect touches
of fingertips. Then, users have to wear additional equipment other
than the controller. While these sensing techniques directly mea-
sure RF signals propagating through the human body injected from
a body-attached device, our technique measures the change in the
coupled impedance of the antenna and hand when fingers form a
loop. Therefore, our approach is wireless, does not require wearing
a gadget, and only requires a handheld controller.

Doppler motion sensing for gesture recognition is also popular,
where a receiver captures reflected RF waves with phase and fre-
quency shifts by moving fingers [18, 26, 28, 45]. However, these
sensing techniques explore reflected RF waves in a temporal domain
rather than a spatial domain, thereby detecting static gestures and
spatial configurations such as maintaining pinch gestures is another
challenging problem [28]. Our approach is different from them in
utilizing the static shape (loop) of fingers rather than motion.
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Figure 2: Sensing principle of AtaTouch. An electromagnetic
field radiates from the antenna and induces an electric cur-
rent in the human fingers (left). “E (red)” indicates electric
field polarization and “B (blue)” indicates magnetic field po-
larization. The impedance of the antenna is electrically cou-
pled with that of the fingers (right). The inductance and ca-
pacitance are changed when the fingers form a loop (left)
or not (middle). The change in impedance causes the return-
loss change of the antenna, which is measured by a VNA.

Cohn et al. [8, 9] measured the voltages of the human body, which
acted as an antenna and captured electromagnetic noise at home,
to detect whole-body gestures. Some studies, the most related to
our sensing approach, leveraged the change in antenna return loss
to classify hand gestures [1, 30, 47]. The hantenna [30] observed
the change in return loss when people touched a coaxial cable’s
inner conductor using one finger and an outer conductor using the
other finger. The cause of this observation was that the fingers were
directly connected to the coaxial cable and the beginning section of
the fingers behaved as dipole antennas. The hantenna [30] requires
direct contact of the cable between two fingertips, thus limiting
natural interaction. Other researchers used the perturbation of an-
tenna impedance over time when fingers move near an antenna
[1, 47]. However, their methods identified temporal finger-motion
patterns, which are less sensitive to hand gestures with small mo-
tions, such as effortless pinching. On the contrary, our approach
considers the characteristics of the antenna recognizing by the fin-
gers forming a loop, thus can recognized small changes in hand
posture. In addition, we explored the integration of an antenna into
VR controllers.

3 SENSING PRINCIPLE
A radio-frequency wave is partially transmitted and reflected when
the impedance of its transmission medium suddenly changes. The
ratio of the reflected power to the incident power is called return
loss. When a radio-frequency wave is fed to an antenna, we can
obtain the return loss of the antenna due to the sudden impedance
change between a signal source and the antenna. A vector net-
work analyzer (VNA) is used to measure the antenna parameters,
including return loss. The signal source of a VNA transmits high-
frequency waves to an antenna through a device under test (DUT)
port of the VNA.

We leverage the impedance change of an antenna when electro-
magnetically coupled with human fingers. When a high-frequency
AC signal flows to an antenna, an electromagnetic field is induced
(Figure 2 left). The human body is electrically conductive at radio

frequency. Therefore, the electromagnetic field induces a current
in the fingers near the antenna when fingers are aligned to the
electric field of the antenna (arrows in Figure 2 left). Owing to the
inductance components in the antenna and the fingers (Figure 2
right), their impedance is mutually coupled. As the pinching fingers
are closed or opened, the capacitor component in the hand changes.
This impedance change by the finger touch state subsequently
changes the antenna return loss.

We verified the sensing principle of AtaTouch through a pilot
experiment. We fabricated a V-shaped antenna using a coaxial cable
(Figure 2 left, middle) as it is one of the fundamental shapes of the
antennas.We stripped off the coaxial cable sheath and divided it into
a feedline and a ground-side line. From our experience, observing
the change in return loss was not possible when the antenna was
too short. Therefore, the length of each line was set 6 cm, and the
angle between the two wires was set 110◦. Our hypothesis was
that return loss would significantly change as fingers are closed
or opened when fingers are aligned to the longitudinal direction
of the antenna (i.e., when fingers are aligned in the direction of
electric field oscillation).

The first author closed the thumb and index finger of the right
hand (Figure 2 left) and then opened the two fingers (Figure 2 mid-
dle). The tips of the fingers were placed 4 cm from the feed point of
the antenna. The hand rested on the desk, and the gap between the
fingers when opened was maintained below 5 mm to minimize the
effect of hand movements. Return loss data in the frequency range
from 800 MHz to 1.5 GHz were collected from a miniVNA tiny [33].
Data collection was performed for four different combinations of
hand orientations and locations (Figure 3). The hand orientations
were transversal and longitudinal to the stranded wires of the an-
tenna. The hand locations were in front of the antenna or lateral
to the antenna. In each combination, we collected the return loss
data 20 times for each of the closed (Touch) and opened (Non-touch)
states of the pinching fingers.

The differences between the return loss data of consecutive Touch
and Non-touch in the corresponding frequencies were calculated,
and the difference of maximum values was subsequently chosen. In
total, 20 differences in return loss were obtained for each of the four
combinations. When the hand orientation was in the longitudinal
direction of the wires, the average differences were -14.57 and -6.24
dB for the frontal and lateral locations of the hand, respectively.
However, when hand orientation was in the transversal direction
of the wires, the average differences were -0.55 and -0.59 dB for
the frontal and lateral location of the hand, respectively. We con-
cluded that the changes in coupled impedance and return loss are
maximized when the pinching fingers align with the poles of the
antenna. This pilot experiment result supports our hypothesis.

4 IMPLEMENTATION
In this section, we describe a prototype VR controller with an Ata-
Touch inside. Our design goals were 1) to significantly revise return
loss values when fingers are closed (Significant Magnitude) and 2)
to make return loss always increase or decrease when fingers are
closed regardless of the location of the fingers (Consistent Trend).We
considered the finger location to deal with the case of re-grabbing
the controller.
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°

Figure 3: Average return loss difference between when the
thumb and index finger are closed or opened. Data were col-
lected for four different hand locations and orientations.

Figure 4: The first prototype of the AtaTouch (left) is shown
to help understand the antenna location in the controller.
An image on the right shows the final AtaTouch prototype.

4.1 Antenna Placement
As we verified in the Sensing Principle section, the orientation
of the finger should be aligned with the electric field polarization
to affect the impedance of an antenna. There were two options:
one was the frontal space of a V-antenna and the other was the
lateral space of a V-antenna, wherein fingers were in a longitudinal
direction of stranded wires, as shown in Figure 3 bottom. Using the
frontal space of the antenna makes it difficult to embed the antenna
in a controller considering the common controller formfactor and
grip posture. Therefore, we chose the placement of the fingers to
the lateral space of the antenna. In this case, the antenna could be
placed inside the controller that users grip (Figure 4 left).

4.2 Design Parameter Optimization through
Simulation

To satisfy the aforementioned design goals, Significant Magnitude
and Consistent Trend, we needed to know the influences of antenna
length and finger position on return loss. Therefore, we conducted
electromagnetic simulations which are commonly used in antenna
design [6, 27, 43].

We made a virtual V-shaped antenna using two metal wires
(feedline and ground line). The antenna was inverted and placed
inside a virtual hand to simulate the situation where a hand grips
the controller (similar to Figure 4 left). We used a virtual, one-side-
open, metallic cylinder shell as a palm (Figure 5). The dimensions
of the cylinder shell was 8.5 cm (width) × 6 cm (height) × 1 cm

gap
(5 mm)

Thumb

Index
Finger

0 cm

2 cm

5 cm

Figure 5: Metallic cylinder shells were used as a palm and
fingers (left). The V-shaped antenna shifted from 0 cm to 5
cm along the blue arrow (right).

(thickness). The thumb and index finger were represented by a ring
with an inner diameter of 4 cm and a size of 1.3 cm (height) × 1
cm (thickness). The ring was opened with a 5-mm gap to represent
non-touched fingertips. The palm was placed below the fingers.
We varied the length of the antenna from 2 cm to 8 cm in 2-cm
steps. For each antenna length, the hand positions were varied
from 0 cm to 5 cm in 1-cm steps. The end of the feedline and
ground line is 2 mm apart from the hand, leading to different angles
for each antenna length. We used OpenEMS [27] with MATLAB
as simulation tool, which uses the finite-difference time-domain
(FDTD) method. As a result of the simulation, we obtained a return
loss value for each frequency. As the operating frequency of the
VNA [33] of our prototype was from 100 MHz to 3 GHz, we used
the return loss values in this range.

We analyzed the delta value of return loss from Touch to Non-
touch (Figure 6). For an antenna length of 2 cm, the delta is positive
for 0 cm of the finger position and negative for 3 cm of the finger
position. This indicates that the trend of return loss change as
fingertip touches is not consistent depending on the position of the
fingers. For an antenna length of 4 cm, we observed a consistent
trend of the delta at approximately 800 MHz, but the magnitudes of
the delta are smaller than those of antenna lengths of 6 cm and 8 cm.
We found a large delta and a consistent trend of delta at frequencies
from 800 MHz to 1.2 GHz for the antenna lengths of 6 cm and 8 cm.
Finally, we chose an antenna length of 6 cm because it showed a
slightly larger magnitude of delta and will enable a more compact
controller design.

In a supplemental simulation, we observed the effect of the an-
tenna angle on return loss. The configuration of the palm and the
fingers in the simulation were the same as the previous one. For
antenna length of 6 cm, the antenna angles were set to 10, 20, and
30◦. For each antenna angle, the finger positions were set to 0, 2,
and 4 cm. Figure 7 shows the delta value of return loss from Touch to
Non-touch. The return loss change was the largest for the antenna
angle of 30◦ and the smallest for 10◦.

4.3 Hardware Configuration
We 3D-printed the prototype controller in the shape of two attached
cylinder shells. A larger cylinder (radius = 1.2 cm) was placed on the
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Figure 6: Simulated return-loss differences between Touch
and Non-touch with varying antenna lengths and finger po-
sitions. The numbers in the graphs indicate the average of
the maximum changes in return loss.

Figure 7: Simulated return-loss differences between Touch
and Non-touchwith varying antenna angles and finger posi-
tions. The same color indicates the same antenna angle with
varying finger positions.

thumb side, and a smaller cylinder (radius = 0.6 cm) was placed on
the side of the other fingers. The heights of the cylinder shells were
10 cm, and the thickness was 2 mm. For convenience of the grip,
we reduced the radius of the cylinders of the part where the thumb
and index finger meet. We fabricated a V-shaped antenna (length
= 6 cm, angle = 35◦) using a coaxial cable. We placed the antenna
in the controller so that the front face of the controller and plane,
comprising two wires of the antenna, are parallel. We attached the
VNA and HTC VIVE tracker to the back of the controller prototype
(Figure 4 right). The SMA (SubMiniature version A) connector of the
antenna was connected to the DUT port of the VNA. We observed
that the palm position holding the controller also affected the return
loss. For robust sensing, we found that wrapping the palm side of
the controller with an aluminum foil (i.e., a metal to shield RF)
effectively reduced the influence of the palm position. Therefore,

we wrapped the palm side of the controller with 8.5 cm (width) ×
10 cm (height) of aluminum foil.

4.4 Classifier
A laptop with a 4-core Intel i7 processor was used to run the soft-
ware obtaining the return loss data and determining the touch states
of pinching fingers. The return loss data were sent to the laptop
from the VNA over a USB serial link. We collected 10 data points in
the range of 930 MHz to 1.08 GHz, where the change in the return
loss was most dynamic. Although there was a clear difference in
the return losses between Touch and Non-touch, we could not use
the same threshold criteria for all users because the finger length
and hand size affect the return loss values. Therefore, we decided
to calibrate a classifier for each person. This calibration process
needs to be performed once. To simplify the calibration process, we
collected only Touch data and used a one-class classification algo-
rithm to classify Touch and Non-touch, which utilizes the nearest
neighbors of a data point. We collected 80 Touch data for each user
as calibration data. We compared new input with 30 nearest neigh-
bors in the calibration data and obtained distances between the
new input and its neighbors. We accepted the input as Touch if the
mean of the distances was smaller than a threshold; otherwise, we
accepted it as Non-touch. We designed the threshold optimization
method as follows. We obtained the distances between each datum
in the calibration data and 30 nearest neighbors, except for itself. A
total of 2400 (80×30) distances were gathered, and we calculated
the mean of the distances. Subsequently, we set the threshold (Θ)
as the addition of the mean of the distances and a margin (𝛼) (i.e.,
Θ =𝑚𝑒𝑎𝑛 +𝛼). Through a pilot test with six participants, we found
that the classifier worked well with a margin of 2 (i.e., 𝛼 = 2).

5 FINGERTIP TOUCH DETECTION
ACCURACY TEST

We evaluated how precisely AtaTouch can detect the touch state
of pinching fingers. We recruited 12 participants (6 females and
6 males, all right handed) aged between 18 and 26 years from a
recruiting board on a university campus. The accuracy test took
approximately 20 min.

Obtaining reliable ground-truth systems for detecting fingertip
touch states is difficult. We considered an optical tracking system
using markers, but human fingertips have complex curved shapes
and markers could not represent real fingertip positions. Moreover,
we considered attaching a colored sticker to the thumb tip and
checking the occlusion of the sticker when the fingertips touch
each other. However, the touch positions on the thumb tip were
not always in the same position, and an object between fingertips
might affect the results of our system. On the contrary, a human
observer was used as an accurate touch-event detector in a previous
study [51]. Therefore, we decided to use a human observer as a
ground-truth system for detecting the touch state in this test.

5.1 Procedure
We evaluated the touch detection accuracy of AtaTouch when par-
ticipants performed pinch gestures using their thumb and index
finger (Index-pinch) and thumb and middle finger (Middle-pinch).
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We collected one training dataset and two test data sets. The train-
ing data were collected only for the case where two fingers were
closed (Touch state). The test data were collected for both cases:
for the Touch state as well as for the Non-touch state where fingers
are open. To ensure a uniform gap between fingers in this case,
we allowed participants to hold a 5-mm-thick transparent acrylic
piece between fingers. The order of the pinch types (Index pinch vs.
Middle pinch) was randomized. For every five pinch gestures, we
asked participants to put down the controller on the desk and then
hold it again to allow for grip variations.

The training data, Non-touch test data, and Touch test data were
collected sequentially. The experimenter confirmed the fingertip
touches of the participants and then pressed the keyboard button
to let the participants know the next pinch type to use. There were
only instructions on the screen about what pinch type to use, and
any live-prediction result of AtaTouch or return loss data from VNA
was not shown to both the experimenter and the participants.

The training data contained 40 data points for each pinch type.
The process to gather training data was done in less than 5 min. For
the test set, 2400 trials (12 participants × 50 datapoints × 2 fingers
× 2 touch-states) were collected. We recorded both live prediction
of touch states from AtaTouch and raw data of return loss from
VNA.

5.2 Results
We evaluated the accuracy of touch detection using only the live-
prediction results from AtaTouch. The overall touch detection accu-
racy of AtaTouch was 96.4% (SD=7.6). Figure 8 shows the accuracies
for the touch states of the ground truth and fingers. In the touch
states, AtaTouch predicted Non-touch and Touch with accuracies of
95.0% (SD=14.6) and 97.8% (SD=6.6), respectively. For Index-pinch
and Middle-pinch, the accuracies of touch detection were 97.7%
(SD=6.6) and 95.2% (SD=14.0), respectively.

While AtaTouch showed a decent pinch detection accuracy, the
standard deviation of Non-Touch state detection accuracy was rela-
tively high. This standard deviation came from one participant with
a long middle finger (Touch accuracy: 100%, Non-touch accuracy:
49%). When there is a gap between the finger and the side of the
controller owing to the long finger length, the difference in the
return loss between Touch and Non-touch is smaller (∼5dB) than for
people with shorter fingers (∼20dB). The threshold (Θ), which we
chose through the pilot test (please see the Classifier subsection)
worked well enough for most participants, but the margin (𝛼) may
need to be adjusted depending on the finger length of a user. We
performed post-hoc analysis using the recorded data from the test.
We reduced the margin (𝛼) to 0.3 (i.e., Θ =𝑚𝑒𝑎𝑛 + 0.3), which was
originally 2. The pinch detection accuracy of this participant in-
creased to 95% for Touch and 93% for Non-touch. With this accuracy
result, the standard deviation of Non-touch accuracy for 12 partici-
pants was reduced from 14.6 to 2.0. We expect that this process of
adjusting the threshold could be done by a user through a device
personalization interface.
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Figure 8: Fingertips touch detection accuracies of AtaTouch
on 12 participants. Error bars indicate standard deviation.

6 USER STUDIES ON VR INTERACTION
SCENARIOS

We evaluated AtaTouch with VR interaction scenarios wherein
people move VR objects using a pinch gesture. This experiment had
two sub-experiments; one was “Robustness of Touch Detection”,
and the other was “Sensitivity and Effortlessness of AtaTouch”. We
recruited 12 participants (4 females, all right handed) aged between
19 and 27 years from a recruiting board on our university campus.
These two sub-experiments took approximately 40 min.

The VR environment was run on Unity with an HTC VIVE
Cosmos headset with a tracker attached to the AtaTouch controller
(Figure 4 right). The pinch states estimated by AtaTouch were
sent to Unity. Subsequently, the participants could attain visual
feedback on a hand model and grab an object. The hand model had
a translucent green spherical cursor, and the block turned bluewhen
the cursor was hovering over the block. After introducing both sub-
experiments, we collected calibration data from each participant
as we did in the accuracy test. We asked participants to wear the
headset and hold the controller on their right hand.

6.1 Robustness of Touch Detection
The goal of this sub-experiment was to evaluate how AtaTouch
robustly and seamlessly maintains touch states for various hand
postures in a VR interaction scenario. The task was to move nine
virtual blocks on the desk from the left side to the right side over a
wall on the center of the desk. The task ofmoving a block from left to
right was to evaluate the object drop rate; the object dropped when
AtaTouch recognized Touch as Non-Touch. The task of moving the
hand from right to left after putting down the block was to evaluate
false pinch rate; false pinch denotes recognition of Non-touch as
Touch.

Participants could grab the block by performing a pinch gesture.
When only participants saw and heard a “grab” instruction, they
could grab the block and then move it to the right side of the
desk. They were not allowed to put down the block until they see
or hear “release” instruction (“grab” trial). The number of object
drops was counted in between “grab” and “release” instructions.
Subsequently, participants moved their hands from right to left.
They were not allowed to grab the block until they see or hear
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Figure 9: User studies on VR interaction scenario.When par-
ticipants touch their fingertips, the hand model shows vi-
sual feedback (A, B). The first sub-experiment was to move
virtual blocks to the left side of the desk (C). The partici-
pants moved the blocks in three hand postures (D, E, F). The
second sub-experiment was to drop virtual blocks to the bot-
tom as fast as possible (G).

“grab” instruction (“release” trial). The number of false pinches was
counted in between “release” and “grab” instructions.

The blocks were placed in 3 rows × 3 columns, and the blocks
in each row had a handle in the same position. The position of the
handle was to induce different hand postures when participants
grab the block. The purpose of different hand postures was to verify
that AtaTouch can detect pinch gestures in various hand postures.
As shown in Figure 9 (D–F), we requested participants to grab the
blocks through three hand postures. Participants repeatedly moved
nine blocks for six sets. In the first three sets, participants picked
up the block with Index-pinch, and in the latter three sets, they used
Middle-pinch. In total, 1296 trials (12 participants × 9 blocks × 6 sets
× 2 (“grab” and “release” trials)) were recorded for the evaluation.

The overall object-drop rate ( # of object drop
# of grab trials + # of object drop ) was

2.75% (SD=3.2). The overall false-pinch rate
( # of false pinch
# of release trials + # of false pinch ) was 4.4% (SD=5.45). Figure 10 shows
the error rates for the Index-pinch and Middle-pinch. As the tracker
was sometimes not properly tracked, the block was stuck when the
participants performed pinch gestures and they needed to re-pinch.
These trials were counted as object drops. Some participants per-
formed pinch gestures just for fun when the “release” instruction
was provided; the false-pinching errors contained these human
errors. Despite these measurement errors, AtaTouch showed rea-
sonable accuracy in a VR interaction scenario.

Overall Index Middle

Object Drop

Overall Index Middle

False Pinch

Figure 10: Error rates on object drop and false pinch of Ata-
Touch on VR interaction scenario of moving virtual blocks.

6.2 Sensitivity and Effortlessness of AtaTouch
The objective of this sub-experiment was to evaluate how well Ata-
Touch supports a light pinching interaction. The task was to grab
the 16 blocks on the edge of the desk and quickly and successively
drop them to the floor. We designed this consecutive quick pinch-
ing task to induce participants to put less effort into each pinch
gesture. Participants could grab the block by performing a pinch
gesture. Participants repeated the dropping of 16 blocks over six
times. The participants used Index-pinch for the first three trials and
used Middle-pinch for the latter three trials. After completing the
tasks, participants scored the two statements on a 7-points Likert
scale for each pinch type. The statements were as followed: S1)
“Compared to the usual experience of dropping objects in the real
world, I had to make my fingers more apart to drop the block.”, S2)
“Compared to the usual experience of picking up objects in the real
world, I had to pinch or tap my fingers more strongly to pick up the
block.”. On the scale, 1-point indicated strong disagreement, and
7-point indicated strong agreement on each statement.

As shown in Figure 11, participants responded that they could
drop the virtual block without making their fingers apart largely
for both Index-pinch (S1 score = 2) and Middle-pinch (S1 score =
2.17) cases. In addition, participants reported that they could pick
up the virtual block without strong pinching or tapping gestures
for both Index-pinch (S2 score = 2) and Middle-pinch (S2 score =
2.17) cases. Feedback from the participant were “I was amazed that
it worked so well than I expected. (p6)”, “Sometimes, the middle
finger and thumb were a little apart, but the block was still in my
hand. Except for those cases, grabbing or dropping objects could
be done with efforts similar to or even with less effort than the real
experience. (p8)”.

7 LIMITATION AND FUTUREWORK
The prototype controller appears cumbersome owing to the size
of the VNA. Modern RF technologies, however, have enabled a
VNA integrated on a chip [37, 38]. As AtaTouch requires only an
antenna and a VNA in a controller, a future AtaTouch prototype
could have a much lighter form factor than the current one. In
addition, we simulated the antenna lengths and changes in return
losses in the frequency range from 100 MHz to 3 GHz, which is
the operating range of the VNA we used. It might be possible to
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Finger apart largely to drop an object (Index)

Finger apart largely to drop an object (Middle)

Finger pinch strongly to grasp an object (Index)

Finger pinch strongly to grasp an object (Middle)

Figure 11: Feedback of the participants on light pinch. (1:
Strongly disagree to 7: Strongly agree). The lower the score,
the better.

find a higher frequency range that shows significant changes in
the return loss for a shorter antenna, and the antenna will enable a
smaller controller form factor.

It took 152 ms on average from a user’s fingertip touch to touch
state classification. Considering that the sub-millisecond time con-
stants of the involved RF physics and the RF measurement circuitry
and the low computational cost of the classifier’s nearest neighbor
search algorithm, we presume that the majority of the processing
time must be due to the bottleneck of the serial link from VNA to
the computer. As we were using an off-the-shelf VNA for prototyp-
ing, we did not have control over the serial link and its protocol.
We expect that the processing time would be significantly reduced
to allow for measuring more data samples per second if we build a
prototype with customized electronics in the future.

The ambient RF signals may not affect the return loss measure-
ment because AtaTouch leverages the electromagnetically coupled
impedance of the antenna and human fingers when they are close
to each other. Therefore, the fingertip touch segmentation accuracy
of our system would be robust to changes in the environment.

AtaTouch may be useful for distinguishing between two fingers
touching a conductive surface and one finger touching a conduc-
tive surface. Zhang et al. [51] proposed a precise on-skin touch
segmentation method and discussed that their method cannot re-
liably distinguish single-finger touches and multi-finger touches.
If one finger touches the opposite palm, no looping is achieved
between the finger and thumb. However, when both thumb and a
finger touch the palm, a loop is formed between a finger and thumb
through the contacted palm. As our sensing principle detects loop
formation between thumb and a finger, it may be possible to detect
loop formation of a thumb-palm-finger, which would be useful for
robust detection of two-finger interaction such as an on-skin zoom
in/out gesture.

Finger identification techniques can be combined with the Ata-
Touch controller. For instance, we attached capacitive sensors to
the AtaTouch controller to obtain the thumb position. From the
thumb position, we could identify whether the thumb touches the
index or middle finger (please also see Video Figure).

AtaTouch may work with other electronic components, such as
buttons and batteries, which are commonly used on controllers.
We observed that the aluminum film, which was originally used
to reduce the effect of the palm position, effectively shielded the
capacitive sensors and electric wires (i.e., metallic components).

Further, we tested the AtaTouch controller with electric wires inside
the controller. The return loss changed when the wires were moved,
but remained unchanged when the wires were fixed. The effect
of electronic devices on AtaTouch could be addressed with RF
shielding or fixation of electronic devices.

For more robust sensing, further optimization of the antenna
design and classifier would be needed. One possible solution is to
use an antenna with high directivity. Directional antennas would
achieve better SNRs by reducing the effects of palm noise and sen-
sitivity to other electrical devices. Another possibility is to improve
the classifier. We implemented a simple classifier that only uses
Touch data as training data and uses a static threshold. Achiev-
ing higher accuracy through the exploration of another type of
classifier such as a two-class classifier would be possible. To avoid
personal calibration, classifiers that set the threshold dynamically
or based on the first derivatives of the raw return-loss signal are
possible.

Although we observed that finger length and hand size affect the
return loss values, a deeper investigation is required to determine
which and how user variance (e.g., BMI, hand size, skin moisture)
affects our sensing principle in a future study.

8 CONCLUSION
While modern sensing techniques enable VR controllers to support
natural interaction using hands, the techniques have a limitation
for the precise segmentation of two fingertip touches, which is
important for robustly supporting a pinch gesture. To address this
problem, we proposed AtaTouch, which is a novel, precise, and
robust fingertip-touch sensing technique. We evaluated the perfor-
mance of AtaTouch on the prototype VR controller. Our system
could precisely detect fingertip touch with an accuracy of 96.4%.
Another user test conducted on VR environments demonstrated
that participants could robustly move virtual blocks with a low
object-drop rate (2.75%) and a low false-pinch rate (4.40%). Feed-
back from participants showed non-exaggerated finger movements
in the test, and the result supported the sensitivity of AtaTouch.
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