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ABSTRACT

The space around the body not only expands the interaction
space of a mobile device beyond its small screen, but also
enables users to utilize their kinesthetic sense. Therefore,
body-centric peephole interaction has gained considerable at-
tention. To support its practical implementation, we propose
OddEyeCam, which is a vision-based method that tracks the
3D location of a mobile device in an absolute, wide, and con-
tinuous manner with respect to the body of a user in both static
and mobile environments. OddEyeCam tracks the body of
a user using a wide-view RGB camera and obtains precise
depth information using a narrow-view depth camera from
a smartphone close to the body. We quantitatively evaluated
OddEyeCam through an accuracy test and two user studies.
The accuracy test showed the average tracking accuracy of
OddEyeCam was 4.17 and 4.47cm in 3D space when a par-
ticipant is standing and walking, respectively. In the first user
study, we implemented various interaction scenarios and ob-
served that OddEyeCam was well received by the participants.
In the second user study, we observed that the peephole target
acquisition task performed using our system followed Fitts’
law. We also analyzed the performance of OddEyeCam using
the obtained measurements and observed that the participants
completed the tasks with sufficient speed and accuracy.
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INTRODUCTION

Nowadays, mobile devices have become platforms for increas-
ing number of diverse applications. However, their small
screens make it difficult for users to use information-rich ap-
plications and switch between the applications [9].
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Figure 1. OddEyeCam enables the mobile device tracking of the body
of user by combining a wide vision for body tracking and partial depth
information (left). Our system supports various body-centric peephole
interaction scenarios. An example of world map is shown in Figure 9
(right). Six images were acquired from the same view-point and were
blended but not otherwise edited.

Among the many efforts to overcome the limitations due to
small screens of mobile devices, the interaction concept of
expanding the interaction space to vicinity of the human body
[13, 14, 18, 33, 65] has been extensively studied. For in-
stance, this expansion enables users to peep into a large virtual
workspace by using the arm-reachable space around their bod-
ies. Additionally, it lets users increase spatial memory recall
of virtual information [58], reduce cognitive load when they
interact with multiple information sources in a mobile context,
and switch applications quickly by utilizing spatial memory
and kinesthetic cues [13].

Various approaches have been considered to support such spa-
tial interactions. They range from outside-in tracking methods
with an external-vision system or electromagnetic-tracking
equipment to inside-out tracking methods with embedded cam-
eras or inertial measurement unit (IMU) sensors. However, the
approaches have their own limitations. The outside-in tracking
method is difficult to support the portability of mobile devices.
The IMU-based approach, which is one of the inside-out track-
ing methods, tracks the device position relative to the initial
position. This approach does not track the user body position;
therefore, reliable tracking of the positions in body-centered
interfaces is difficult when the user moves. Another approach
is face tracking. According to recent neuropsychological stud-
ies [3, 52], a human perceives the trunk-centered space as a
whole body-centric space rather than the head-centered space.
However, face tracking cannot support body-centered inter-
faces when the face and body are misaligned. Furthermore,
another approach is to track external features using a rear



camera. However, this approach cannot support body-centric
interfaces because it does not know the body position.

To solve the limitations of the previous approaches, we pro-
pose OddEyeCam. Analogous to an odd-eyed cat with two
eyes of different colors, we combine the following two types
of cameras with different characteristics: an RGB camera with
a wide field of view (WFoV) and a depth camera with a narrow
field of view (NFoV). Despite the useful function of the depth
camera, its field of view is too narrow to capture a peripheral
scene [41, 42]. Because an NFoV camera misses a significant
portion of a body when it is close to the body, we require a
WFoV RGB camera for reliable body tracking. OddEyeCam
finds body keypoints from a WFoV RGB image and uses par-
tial depth information from a depth camera to track the body
and estimate the device position relative to the body. Recently,
many mobile devices have included a ToF depth camera [25,
27,31, 38, 47, 51] and WFoV RGB camera [4, 5, 32, 46, 48].
OddEyeCam is expected to be a practical method to enable
body-centric peephole interaction for mobile devices.

The contribution of this study is a practical inside-out mobile
device tracking method to support body-centric peephole inter-
action. OddEyeCam (1) estimates the absolute device location
with respect to the body, (2) provides a wide and continuous
interaction space, and (3) enables robust position sensing with-
out imposing restrictions on the user action in (4) both static
and mobile environments.

Through three experiments, we verified that our system of-
fers the above-mentioned advantages. We implemented the
OddEyeCam prototype and quantitatively evaluated its 3D-
tracking accuracy and usability. First, through an accuracy
test, we evaluated the extent of accuracy to which OddEyeCam
could estimate the x/y/z position of a mobile device, as com-
pared with the OptiTrack tracking system. Second, in our first
user study, we evaluated whether our system could sufficiently
support various body-centric peephole interfaces and whether
it could overcome the limitations of previous studies. Third,
we quantitatively characterized the usability of OddEyeCam
by performing target-selection tasks through a peephole.

In the rest of this paper, we review the related work and present
the requirements and design goals for OddEyeCam derived
from the limitations of earlier work. Subsequently, we describe
the OddEyeCam prototype and the results of the associated
user studies. Finally, we discuss the limitations and future
work of OddEyeCam.

RELATED WORK

The target application domains of OddEyeCam are peephole
and body-centric interfaces. We review these interfaces and
then describe the technical approaches required to realize
them.

Peephole and Body-Centric Interfaces

Using spatial information as input has drawn significant at-
tention for the past 20 years [19, 28, 54]. Peephole interfaces
enable users to move the handheld device in a 3D physical
space and use it as a window to view into a virtual space larger
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Figure 2. Overview of the technical approaches for mobile device track-

ing.

OddEyeCam

than the screen. Spindler et al. showed that spatial manipula-
tion could significantly outperform traditional pinch-drag-flick
[56]. Moreover, body-centric interfaces, which map the virtual
workspace to the physical location around a user, offer addi-
tional benefits. They enable users to utilize their kinesthetic
sense to increase in spatial memory recall [58] and can per-
form mobile context switching tasks quickly and accurately
with a low cognitive load [13]. They even enable eyes-free
shortcut usage around the body [33].

These above-mentioned studies discussed a common interac-
tion space: peripersonal space, which is the space that sur-
rounds a human body and is easily reachable by human hand
[45, 61]. People can perceive their peripersonal spaces using
proprioception, as well as vision and hearing. The periper-
sonal space not only extends the interaction space beyond the
small screen but also allows users to utilize proprioception
while offering the aforementioned benefits. Therefore, many
studies proposed a body-centric interface [13, 14, 15, 33, 53].
A recent neuropsychological study showed that a human could
quickly form a peripersonal space for each body part, and that
a trunk-centered peripersonal space is the most similar to the
whole-body egocentric space representation [52]. Additionally,
people judged the egocentric orientation using torso-centered
reference frame rather than head-centered reference frame [3].
Notably, HCI studies implicitly used the torso as the reference
frame of the user. Peephole displays [65] placed a calendar
application and Doodle pad on the left and right sides of the
torso, respectively, to locate the applications for the personal
reference frame of the user. MultiFi [20] proposed a method
of placing an additional sensor in the chest pocket of the user
to determine the relative position of the handheld touchscreen
to the body.

Technical Approaches for Mobile Device Tracking

Many studies used the outside-in tracking methods by in-
stalling equipment including camera [39, 62, 64] and elec-
tromagnetic system [16] in the surrounding space of the user,
followed by attaching a marker to the mobile device. Inside-
out tracking systems, which track the mobile device using
sensors inside the mobile device itself, have been considered,
and we review them in the following section.

IMU-Based

One of the inside-out tracking methods is to use the motion
data obtained using an accelerometer, gyro sensor, and magne-
tometer. One possible way is to integrate the relative motion
of the IMU sensor (e.g., odometery); however, it creates drifts
because of sensor biases [29, 43, 50]. Although a reliable
position cannot be obtained owing to the drift, there exists
a stable reference frame for estimating the orientation of the
device. The magnetic field of the earth can be used for the



magnetometer, and the gravitational field can be used for the
gyro sensor and accelerometer, and they were utilized for re-
alizing a spatially-aware display [15, 30, 59]. However, the
position of the device could not be obtained because these
reference frames only provide a rotational reference for the
device. Accordingly, Chen et al. [15] remarked that users
naturally tilt the device to make view it when they move it.
Thus, they estimated position of the the device using its ori-
entation. However, Chen et al. noted that their estimation
technique was limited because such tilting did not always per-
fectly align with the true around-body location of the device
in reality [15]. Environmental features can provide a stable
reference frame for the position tracking of IMUs and help this
approach overcome drift problems (e.g., ARKit 3 by Apple,
and ARCore by Google). However, the method still does not
track the body position of the user. We will detail the method
in the “Non-Body Feature Tracking” section.

Face Tracking

Another approach is to capture the face image using the front
camera of the mobile device. For instance, the motion of a
facial feature or face bounding box was tracked on a 2D image
to estimate the device position relative to the face [23, 29,
55]. Hannuksela et al. estimated the 3D location of a device
by modeling the face of the user as a plane in the 3D space
[21]. Because the face was used as the reference frame, the
user is prohibited from rotating her face to obtain body-centric
contents. However, her face naturally rotates when she views
the screen by moving the device [15], and the head can thus
be misaligned with the body [6]. Because face tracking does
not consider the body location, it cannot provide body-centric
contents. Additionally, a user naturally tilts the screen to
view it while moving the device. In this case, the face image
acquired using the front camera is still in the center, even if
the device moved. Therefore, no change occurs in the motion
of the face features on the 2D image.

Non-Body Feature Tracking

Another vision-based approach involves non-body feature
tracking, in which the data of environmental features is ac-
quired using a rear camera [22, 63] and then combined with the
IMU data [6, 7] (e.g., SLAM). This approach is not appropri-
ate in mobile environments because the environmental features
are changing. Additionally, this approach relatively accumu-
lates the motion data from the initial position, not the body
position of the user. Thus, this approach cannot support in-
stantaneous use cases without initial-position calibration step.
Babic et al. [6, 7] attempted to automatically perform this
calibration by checking whether the device exited the control
space. However, a trade-off existed between the interaction-
space size and reliable recalibration. The control-space size
for Pocket6 [7] was 16 x16x9 cm, which is insufficient for
body-centric interactions. Additionally, the control space has
to be repositioned for every 16 cm of movement while the user
is walking.

REQUIREMENTS AND DESIGN GOALS OF ODDEYECAM
In this section, we present the requirements and design goals
of OddEyeCam while considering the limitations of earlier
works.

The four requirements are:

1. Absolute location estimation: OddEyeCam should esti-
mate the absolute location of the mobile device relative to
the body while not integrating the relative movements of
the device from a initial position.

2. Wide and continuous interaction space: To cover various
interaction scenarios, OddEyeCam has to continuously track
the device location in a wide space around the body.

3. Robust position tracking without restriction on the ac-
tion of the user: The behavior of a user should not be
restricted for achieving high tracking performance. There-
fore, our system must robustly estimate the location of the
mobile device relative to the body.

4. Usable in a walking situation: To completely support the
portability of mobile devices, OddEyeCam must track the
device position relative to the body while the user is moving.

In the evaluation, we confirmed that our method satisfies the
above-mentioned requirements. Some requirements, such as
“estimating the device position in an absolute manner,” are
self-evident from the implementation. However, some require-
ments must be evaluated by the user. We set the design goals
as follows to check whether the requirements were satisfied.

1. OddEyeCam enables a user to feel that the content is in a
fixed position relative to the body even when it was instan-
taneously used.

2. OddEyeCam enables a user to feel that the content is in a
fixed position relative to the body for long usage periods.

3. OddEyeCam ensures that a user feels that the body-fixed
content appeared as expected even when she moves her
mobile device.

4. OddEyeCam makes a user feel a continuous movement of
the content.

5. OddEyeCam makes a user feel comfortable with her eyes
and wrist during the usage period.

6. OddEyeCam enables a user to feel that the content is in a
fixed position relative to the body even when she is walk-

ing.

We implemented the OddEyeCam system on the basis of these
requirements. The design goals were quantitatively verified in
the user studies.

ODDEYECAM IMPLEMENTATION

OddEyeCam estimates the 3D location of a smartphone with
respect to the body via the process depicted in Figure 3. 1)
A WFoV RGB camera provides a whole-body image. 2) An
RGB-D camera provides partial body depth and RGB image.
3) An distortion-alleviation module reduces the distortion of
the fisheye image through an equirectangular projection. A
body-tracking algorithm provides body keypoints from the
undistorted image. 4) The body keypoints found in the WFoV
image can be projected to the NFoV depth image by combining
two cameras. 5) Using keypoints and depth information, as
well as additional gravity vector from an accelerometer, we
can estimate the body coordinate system. 6) We can obtain the
device location with respect to the body by converting the body
position (obtained in Step 5) with respect to the camera. The
following section detail the implementation of OddEyeCam.
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Figure 3. Overall pipeline of OddEyeCam.

Figure 4. OddEyeCam prototype comprises a WFoV RGB camera (A)
and an NFoV RGB-depth camera (C, B).

Hardware Configuration

We used a 180° fisheye-eye lens USB camera as the WFoV
RGB camera. Intel RealSense D415 was chosen as the NFoV
depth camera in our prototype. The depth camera comprised
two IR stereo (65°x40°) cameras and an RGB (69.4°x42.5°)
camera. The camera resolutions were 480x270 (depth) and
424 %240 (RGB) pixels for Realsense D415 in our settings.
The WFoV RGB image was 640 x480 pixels in resolution. As
shown in Figure 4, the WFoV RGB camera and RGB camera
of D415 were vertically aligned with each other. The distance
between both lenses was 3.1cm. The cameras were attached
to the top-center of the mobile device. To capture the image
of the torso, the cameras were tilted at 40° with respect to
the mobile device. We used a Samsung Galaxy S5, whose
touchscreen had the size of 5.10-inch and the resolution of
10801920 pixels. The cameras were connected to a computer
via USB cables.

Fusion of the NFoV Depth and WFoV RGB Cameras

The purpose of camera fusion is to find pixels on a depth image
that the pixels match with body keypoints on a WFoV RGB
image. Perez et al. [41, 42] proposed a similar idea of com-
bining these two cameras, although the implementation and
applications were different from ours. A camera model can
determine the projected 2D position of 3D points. Therefore,
they mapped the depth image with 3D information to a 2D
WFoV image. Our system is interested in the depth informa-
tion of the body keypoints found on a WFoV image, which
is the reversed order of what Perez et al. did. Therefore, our
aim cannot be simply realized using their method. Thus, We
implemented our system to combine cameras, which provides
a direct one-to-one conversion map for each pixel.

&

Figure 5. Fisheye image from WFoV RGB camera (left) and the corre-
sponding undistorted image (right)

Undistortion of Fisheye Image

A fisheye camera uses a different camera model, while a nor-
mal RGB camera uses a pinhole camera model, i.e., the per-
spective projection of 3D objects. We had straighten the dis-
tortion of a WFoV RGB image like a normal FoV RGB image.
Thus, we calibrated the fisheye camera and transformed the
WFoV image via perspective projection. We obtained in-
trinsic parameters using a fisheye-camera-calibration tool in
OpenCV. They enabled us to obtain a perspective projection
image shown in Figure 5 (right).

Matching a WFoV Image to a Depth Image

We employed homography, which can transform a 2D image
to another 2D image in the 3D space, to obtain the pixel
relationship between WFoV and depth cameras. Two cameras
were attached 3.1 cm apart from each other, and thus there
existed difference between the image locations for an object
seen by two cameras (i.e., binocular disparity). We set a
range of comfortable arm movements as 20 ~ 60 cm from the
body. Subsequently, we matched two images to minimize the
disparity at the center of a comfortable range, not the farthest
position. We placed a checkerboard sheet at a distance of 40
cm from the cameras and obtained the homography matrix by
using the features on the surface taken two cameras. We used
AKAZE [1, 2] as a pattern-matching algorithm, and removed
the outliers using RANSAC. The undistorted WFoV image
was scaled, translated, and rotated to be matched with the
NFoV image by using homography. After the matching, we
measured the disparity between two image locations of an "X"
mark captured from two cameras at different distances of 20,
40, and 60 cm from the cameras. The disparities of the mark
were +34, 0, and -7 pixels for each distance aforementioned,
respectively. The physical length of 34 pixels at 20 cm away
from the camera was 2 cm, which is a small length. This means
when the camera is 20 cm apart from the body, OddEyeCam
can find the body keypoints on a depth image 2 cm vertically
different position with the WFoV RGB image.

Mapping Body Keypoints Between Two Images

Our pipeline alleviates the distortion of a fisheye image by
converting it to an equirectangular-projection image and uses
Openpose [11] for estimating body keypoints. Applying per-
spective projection to a fisheye image stretches its periphery
and distorts the shape and size of objects as depicted in Figure
5 (right). Therefore, we used an equirectangular projection
image for body tracking, as the distortion was alleviated by
projecting an image to the planar rectangular coordinate sys-
tem. We calibrated the fisheye camera and obtained intrinsic
parameters using the OCamCalib Toolbox in Matlab [44]. We
calculated the target pixel position of the fisheye image using
the intrinsic parameters [37]. We constructed a one-to-one



Figure 6. Result of the fusion of WFoV RGB and NFoV depth cameras.
The red dots on the images are body keypoints. The upper three images
are from the WFoV camera and the lower two from the depth camera.

conversion map between two cameras, and the body keypoints
found in the WFoV image were mapped to the depth image
in realtime (see Figure 6). When the cameras so close to
the body, that some keypoints were not present in the NFoV
depth image. We moved those keypoints to the closest pixel
locations in the depth image.

Body and Mobile Phone Coordinate System Estimation
OddEyeCam estimates the body position (origin) and orienta-
tion (axes) relative to the phone and then generates the body
coordinate system. Figure 1 (left) shows the body coordinate
system relative to the phone. The x-axis (red line) is directed
from the left (—) to right (+) of a user. The y-axis (green
line) is directed along the downward direction. The z-axis
(blue line) is directed from the posterior (—) to anterior (+)
of a body. The origin of the body coordinate system lies at
the center of line joining the two 3D points of shoulders. We
estimated the x-axis by fitting the 3D points from the left to
right shoulder along a line in the 3D space. To accurately
estimate the x-axis using the depth information, the outliers
were removed using RANSAC. We initially set the z-axis as a
normal vector of the torso that was fitted as a plane. However,
the human torso was not perfectly orthogonal to an anterior di-
rection. The torso has a curved shape and slightly leans toward
the posterior direction. Therefore, first we estimated the y-axis.
To express a human standing-up direction as y-axis, we used
the gravity direction measured using the built-in accelerometer.
The z-axis was estimated as the cross-product of the x-axis
and y-axis after the x-axis was rotated to be orthogonal to
the y-axis. Finally, we could reversely obtain the smartphone
position with respect to the body from the body coordinate
system with respect to the smartphone coordinate system.

OddEyeCam operates at 18-23 fps. Most computing time
was taken by OpenPose. The lightweight version of the pose-
estimation model can further increase the frame rate.

ACCURACY TEST

Our goal was to evaluate whether OddEyeCam could accu-
rately estimate the 3D position of the device relative to the
body. The 3D position of the ground-truth was obtained using
the OptiTrack motion-capture system. Optical markers were
attached to the camera and the torso of the participant. Because
our ground-truth should be human standing-up direction, we
rotated the y-axis of the marker on the torso to be perpendicu-
lar to the ground. The movement of the marker was sampled

Figure 7. Captured image and shoulder keypoints taken from the front
(left) and side (right).
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Table 1. Distance errors by axes. EDE means Euclidean distance error.
The lower two rows are the error results from four participants who
wore a coat that did not cover their necks.

at 120 fps. The smartphone position from OddEyeCam, sam-
pled at 30 FPS, were compared with the ground-truth position,
which shared the same-time frame.

Task

The participants were requested to freely and evenly move
a smartphone in a 3D volume of + 60°(0), £ 60°(¢) while
varying the distance (d) around the body. A participant would
rotate her face following the device. Therefore, this range
was set in consideration of the possible range of neck rotation
[35]. For the distance between the camera and body, d, we
asked every participant to move the device as far and close as
possible within a convenient range of the arm. We provided
the visual aids of 6 and ¢ boundaries on the floor and wall,
respectively. The participants were asked to look at an icon at
the center of the screen while moving the device to consider
the movements for body-centric interfaces.

Procedure

We recruited 10 participants (5 females and 5 males) aged be-
tween 19 and 33 years from a recruiting board on a university
campus. Two sessions were held: standing and walking. For
the walking session, a participant walked back and forth for
1.5m and rotated both clockwise and counterclockwise direc-
tions for the body at the ends of the path. The participants
changed their clothes twice in each session: a casual apparel
and a coat. All the participants completed the task while
wearing a coat they had brought. Each participant moved a
smartphone around her body for 1 min and repeated it thrice.

Results

We collected a total of 30 fps x 60 s x 3 times x 10
participants = 54,000 datapoints for each combination of
(walking/standing) x clothes. Figure 8 depicts the Euclidean
distance between the estimated x/y/z locations using OddEye-
Cam and the ground-truth data. Table 1 presents the distance
between the locations estimated using OddEyeCam and the
ground-truth data for each axis.
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of Figure J.

The Euclidean distance error of OddEyeCam was 41.72mm
(0=26.00) for the standing session and 44.76mm (0c=30.25)
for the walking session. Whether the participants walked or
not did not have a significant effect on the results of our system.
The tracking accuracy was higher at the center of the body, and
lowered as the smartphone moved right/left or up/down. The
errors occurred because the pose-estimation model found the
body keypoints differently on both the images taken from the
front and side, respectively. The estimated keypoints shifted to
the right (red dots in Figure 7 right) from the expected location
(blue dots in Figure 7 right) as the device moved to the right
side of the body. Therefore, the space estimated using our
system looked shrunk left/right and up/down.

Our system became more accurate when the participants wore
a casual apparels (u=41.72mm, and 6=26.00) compared with
wearing coats (U=71.78mm, and 6=59.40). The y- and z-
position errors did not significantly change whether the par-
ticipants wore casual apparels (y: ©=20.90mm, 6=16.62/ z:
u=15.52mm, 6=14.70) or coats (y: U=26.54mm, 6=21.41
and z: u=24.26mm, 6=26.54). However, a change was ob-
served in the x-position error (casual: 4=26.27mm, 6=23.59 /
coat: =55.25mm, 6=56.32). The experiment was conducted
in winter, and some participants had their necks covered with
coats. If the camera was at the top-side around the body,
then the thick clothes that covered the neck hid the shoulder,
and thus the camera could not capture the hidden part. Ac-
cordingly, the shoulder keypoints were located near the neck.
Therefore, the system estimated the position closer in the x-
axis direction than the actual. For participants who wore coats
that did not cover their necks, we achieved higher tracking
accuracy (U=52.11mm, and 6=34.32). The accuracy results
are presented at the bottom of Table 1.

EXAMPLE APPLICATIONS

We created several applications to show various design pos-
sibilities of OddEyeCam. We divided the design space into
six subspaces using the combinations of current mobile device
inputs and OddEyeCam: moving mode (standing, walking)
x spatial input x additional input (touch input, IMU input,
none). These example applications are only the instances of
the subspaces to emphasize the unique advantages of OddEye-

Cam that traditional methods cannot achieve. For example,
OddEyeCam enables instantaneous use cases by estimating
the position without a initial-position calibration step. Ad-
ditionally, it continuously provides body-centric interaction
space while a user is walking. The participants used these
applications in the first user study, as explained in the next
section. Therefore, in this section, we detail the applications
that the participants used in the first user study. Please also
see Video Figure on the ACM digital library.

Standing x Spatial x Touch: Drag and Drop Between
Apps — The interaction concept was proposed to peep into
and access a virtual space larger than the screen by physi-
cally moving a mobile device [19, 65]. Additionally, users
frequently switched from a specific app to a communication
app [9]. Inspired by these two aforementioned points, we
placed two apps to the personal reference frame of the user, as
shown in Figure 9 A. A user can drag a photo in the gallery
app and then drop it to the messenger app.

For the convenience of a right-handed user, we located the
center of the two apps to be in 5 cm right-side of the chest of
the user. Each app was of the same size as the display. The
photos in the gallery app were of the size 1.76x1.76 cm. A
user could activate the drag state by long-pressing the photo.
The photo could be pasted to the messenger app after moving
the device left to view the messenger app and then releasing
the photo.

Standing x Spatial x IMU: Body-Centric Folder — Dis-
crete orientation around the body was useful to retrieve digital
objects [14, 33]. We implemented a body-centric folder shown
in Figure 9 B. A user can access each folder by placing a
smartphone at each location. Moreover, she can select the
application by tilting the device without touching it [57].

The first folder was in the front of the left side of torso, as
shown in Figure 9 B. The interval between the folders was
8 cm. The deadzones of 2 cm were placed between folders
to prevent sudden folder switching. A user could select an
app by tilting the device and the app-icon in the folder was
highlighted with a yellow background. We detected the tilting
using the accelerometer of the smartphone.



Standing x Spatial: Large-Image Viewer — A spatially-
aware display can show an image that is larger than the screen,
as a user can move the small screen to view the different parts
of the image [29]. OddEyeCam can support such interaction
scenarios because it can continuously track the location of the
mobile device in a large 3D space. As shown in Figure 9 C,
we set a curved world map surrounded the body of a user so
that she could pan and zoom the map with only spatial input.
Moreover, a body-centered world map increased the memory
recall of a specific city location.

The map was 38 cm away from the body of the user. If the
user brought the device closer to the map, the device peeped
into a partial region of the map, which emulating zoom-in.
The range of zooming was from 25 to 38 cm. We made the
zooming with 2.5 times of gain, thus the user could effectively
zoom in and out.

Walking x Spatial x Touch: One-Hand Tagging — The
virtual shelves and the body cobwebs anchored around the
body were proposed for placing and retrieving information
[14, 33]. We designed an application that enables users to tag
notifications while paying less visual attention when they are
walking. OddEyeCam can support this scenario because it can
track the mobile device while its user is walking.

There were the following two layers: a notification bar (close
to the user, Figure 9 D right) and tagging zone (far from the
user, Figure 9 D left). The user was surrounded by nine tagging
zones, which were located 30 cm from her body. The zones
were a reminder (on the left side of the user), TODO list (on
the center of the user), and fun tag (on the right side of the
user). Depending on the height, the levels were different: the
duration of the reminder, urgency level, and level of interest.
Initially, a user can see a notification bar. After she drags a
notification, the bar disappears, and then the tagging zones
appear. If the user releases the notification to the desired zone,
it is stored in that zone. However, if she takes the device away
from the tagging zones, they disappear from the screen. A user
can cancel to tag by dropping the notification with the zones
disappeared. The zones were divided as 30° horizontally and
15° vertically. The 1° of deadzone was in the zone to prevent
a sudden change.

Walking x Spatial x IMU: Getting Directions — Depend-
ing on proximity of a user to the device, some systems remove
or superimpose visual information [10, 24]. Similarly, a user
may require different information depending on the her walk-
ing mode. A getting-direction application provides informa-
tion for searching a destination when the user stands still, and
it provides the way to the destination when she walks.

As shown in Figure 9 E left, the application provides four
views around the body of the user when she standing still:
a zoomed-in map (center, close), zoomed-out map (center,
far), and the information of hotels (left) and restaurants (right)
near the destination. As shown in Figure 9 E right, the four
views for a walking situation are as follows: a map (center,
close), simple arrow that directs the user (center, far), next
sub-destination (left), and remaining time for arrival of the bus
(right). The views were divided by 40°, and there were 6° of

Figure 9. Drag and drop between messenger and gallery app (A), body-
centric folder (B), large-image viewer (C), one-hand tagging (D), getting-
direction app (E), and marking menu (F).

deadzones to prevent sudden changes of views. A closer view
of the map is shown when the device is within 30 cm from the
body. Our system detects the walking situations of the user by
accumulating the output of a built-in accelerometer.

Walking x Spatial: Marking Menu — We built a two-
step marking menu so that users can trigger body-attached
shortcuts while paying less visual attention when walking. If
a user presses down the screen at a specific location, then a
marking menu is activated as shown in Figure 9 F left. Four
icons are map (above), calendar (left), call (right), and music
(below) app. The distance between the icon and activated
location is 10 cm. If a user moved the device to the right, “call”
menu would be opened. As shown in Figure 9 F right, four
icons (e.g., favorite numbers) newly came up at the moved
position. A user could call her “Mom” by moving the device
to the left.

USER STUDY 1: DESIGN-GOAL EVALUATION THROUGH

SIX APPLICATIONS

The first user study were aimed to check whether OddEyeCam
satisfied our design goals and whether it was sufficient for
various body-centric peephole applications.

Task

The participants used six example applications that have de-
scribed above. There existed some simple subtasks for each
application. In drag and drop between apps, the participants
sent six selected photos from the gallery app to messenger app.
In the body-centric folder, the participants moved to a specific
folder and selected a specific app following the instruction
of the experimenter. The instructions were ‘“Please open the
‘Entertainment’ folder and then select the ‘angry birds’ app,”
etc. In the large-image viewer, the participant enlarged the
map and read the text on the world map to search countries
and cities following the instruction by the experimenter. The
instructions were “You have seen Korea before. Please instan-
taneously move to the location of Korea and check whether
it is still there,” etc. In one-hand tagging, the participants
classified various types of notifications into their desired tag
zones. In the case of the getting-direction application, the
participants answered the questions by the experimenter. The
questions were “Please open hotel information, and tell me
the price of ‘Ace Hotel London’,” etc. In the marking menu,
the participants used shortcuts following the instructions by



the experimenter. The instructions were “Please call mom at
one gesture,” etc.

Procedure

We recruited 12 right-handed participants (3 women) who
were aged between 19 and 27 years from a recruitment board
on the university campus. The particpants used each applica-
tion twice: standing still and walking. For the walking session,
the participant walked back and forth for a distance of 2 m and
rotated their bodies around clockwise and counterclockwise
directions at the ends of the path. Before the experiment, we in-
troduced a spatially-aware display. We used the “Think-aloud
protocol” and the participants could give feedback freely with-
out time limitation. After using an application in the standing
and walking situations, respectively, each participant scored
the statements on the 7-points Likert scale. The statements
were as follows: S1) I felt a continuous movement over the
body-fixed contents while moving the smartphone. S2) As
expected, I felt that the smartphone moved over the body-fixed
contents. S3-1) My eyes were comfortable while using the
applications. S3-2) My wrist was comfortable while using the
applications. S4) The body-fixed contents were at the same
location at both the start and end of the sessions. S5) I felt that
the contents were fixed to the body as I walked. S6) I could
obtain the expected content at the expected location when I
accessed it instantaneously. The experiment was performed
in one and a half hours. We used a 1€ filter to stabilize the
content on the screen [12]. All the participants completed the
subtasks for all the applications.

Results

We excluded the data from the first participant because we
changed the filter parameters of the “drag and drop between
apps” on the basis of his feedback. For the 11 other partici-
pants, the same parameter values were used. Figure 10 shows
the feedback for each statement in each scenario.

S1, S2, S4, and S6 are related to the tracking performance
of OddEyeCam. The results show that the participants felt
continuous movement (S1 score=5.9), felt the expected move-
ment over the body-fixed contents (S2 score=5.4), could use
the contents in the same location for long usage periods (S4
score=5.6), and could retrieve the expected contents even in
the case of instantaneous access (S6 score=5.5). In their feed-
back, the participants mentioned that they felt as though the
contents were fixed to the body (p2, p3, p5, and p7) and that it
was possible to naturally use the device without being aware
of the need to fix the upper body (p3). Additionally, they
replied that the desired content was exactly there when they
instantaneously accessed a certain location (p3, and p4).

Using OddEyeCam, the participants could access and inter-
act with the contents fixed to the body while walking (S5
score=4.6). The participants reported that they could easily
bookmark notifications or find countries on the world map
because they remembered the location of the content relative
to the body while they walking (p2, p3, p7, and p8). However,
some replied that they could use the content around their body
while rotating, whereas some responded that unwanted content
briefly appeared while rotating. Notably, one participant stated
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Figure 10. Feedback of participants in user study 1. (1=strongly dis-
agree; 7=strongly agree).

that it would be a rare case to turn by 180° in real walking
situations (p2).

All the application examples, except “drag and drop between
apps” were well-accepted for all the statements by participants.
The usability problems of “drag and drop between apps” were
reported from S2, S3-2, and S5. We narrowed down the causes
of usability problems in this application on the basis of the
feedback from participants. First, they experienced a lag when
moving the peephole (p3, p4, p7, and p8). Thereby, the app
moved more than expected, and they overshot the target. The
lagging was attributed to the 1€ filter. If we further optimize
the filter parameters, this lagging problem can be solved, as
shown in the second user study. Second, the participants
interacted in a narrower space in the case of “drag and drop
between apps” than other applications. They had to maintain
their arm posture in a two-screen size space, thereby tiring
them. Third, they reported that long pressing could not be
performed because of body movements while they walked or
rotated, thereby making the process of copying photos difficult
(pS, p8, and p7). However, despite the negative feedback, all
the participants completed the drag and drop task. We can
change the “long pressing” to “short tapping” while a user
walks.

USER STUDY 2: QUANTITATIVE CHARACTERIZATION OF

ODDEYECAM

Although the results from the first user study showed that Odd-
EyeCam satisfied our design goals, we deemed it necessary
to characterize our system and understand the capabilities of
OddEyeCam. This second user study had two purposes. First,
we quantified the human performance when users operated
OddEyeCam via a touch input. Second, we diagnosed the
“drag and drop between apps”, which had a relatively low user
rating compared with other scenarios. We used peephole target
pointing/acquisition tasks, which are more general but similar
to the procedure of “drag and drop between apps”.

Task

The target was displayed on a two-screen space (12.7x11.3
cm?) which was the same space as drag and drop between
apps. The participants could peep into the target through
6.35x6.35 cm? peephole at the center of the mobile phone,
as shown in Figure 11. The target widths were set in the
range of 5.9~32.3 mm with a step of 2.94 mm (50 pixels);
thus there were 10 different target widths. For each target
width, three distances were specified in the range from 7.05 to
12.7 cm to cover the index of difficulty (ID) value uniformly
and widely. Because the target distances were greater than
the screen width, the participants had to move the device to



Figure 11. Peephole target acquisition task on OddEyeCam.

view the other target. There were 12 directions each with
a step of 30°, thereby covering 360°. We ensured that the
participants tapped two opposite directions in series as a round-
trip. Therefore, they completed 180 randomized rounds from
a total of 360 combinations, i.e., 10 target widths x3 target
distances x 12 directions (two combinations in one round). If
they missed the target, the trial was restarted until succeeds.
The two targets were not simultaneously shown through the
peephole, and thus it took time to find the first target. We
did not want to measure this time. Therefore, we let the
participants gain the prior knowledge of the positions of both
the targets by connecting the targets with a red line. When the
task began, the line disappeared.

Procedure

The participants were asked to tap the target using the thumb
of their right hand, which was holding the smartphone. They
completed the tasks in the following two situations: standing
still, and then walking. To understand the effect of the walking
behavior on OddEyeCam, the experiment was conducted on
a treadmill. In each session, 180 randomized rounds were
divided into 30 rounds, thereby totaling to 6 sets. At the end of
each set, the participants took a 1-min break. We encouraged
them to take a longer break if they wanted. The participants
had spent time practicing before the actual test. They had to
perform 30 rounds as the practice task, following which they
could practice as many rounds as they wanted. The experiment
took 1 h and 40 min for each participant.

Participants

We recruited 12 right-handed participants (4 women) who
were aged between 18 and 28 years from the recruitment board
of a university campus. The average width of the thumbs of
the participants was 19.3mm (c=2.14mm). We set the walking
speed of the treadmill to 3km/h, which is a preferred walk-
ing speed when a person is interacting with the smartphone
[8]. Because the walking speed preferred by each person can
be different, the participants could change the speed if they
want, and two of them changed the speeds (p10: 2km/h, p11:
2.7km/h, and others: 3km/h).

Results

Because the target-selection skill of a human follows Fitts’ law
[17], it is meaningful to ensure that Fitts’ law is applied when
people select a target using OddEyeCam to verify the usability
thereof. The linear regression results between movement time
and Fitts’ index of difficulty (ID) are depicted in Figure 12.
The fitted equations are

MT =0.2966 +0.356910g,(A/W +1) (sec), R: = 0.923
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Figure 12. Scatter plot of the movement time vs. the Fitts’ Law index
of difficulty for peephole target acquisition and linear regression with
participants standing still (left) and walking on the treadmill (right).
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Figure 13. Error rate versus target widths for the peephole target acqui-
sition task. High error rates were concentrated at the target widths less
than 8.82 mm.

for the participants standing still and

(sec), R> = 0.958

@
for the participants walking. In equations 1 and 2, A denotes
the target distance, W the target width, and MT the movement
time. A peephole target acquisition task using OddEyeCam
followed Fitts’ law for both standing still and walking situa-
tion (R? = 0.923 for standing still and R> = 0.958 for walk-
ing). In other words, OddEyeCam could support a natural
human-arm and hand movement in peephole target pointing
tasks. Fitts’ law parameters were a = 0.2966 and b = 0.3569,
and throughput was 2.8 bits/s in the standing situation. The
information-transmission rate of OddEyeCam was thrice than
TinyMotion [63], which is a benchmark of pointing tasks
by moving a handheld device. The participants completed
OddEyeCam-based peephole pointing task at a throughput of
1.97 bits/s while walking. This throughput value was still 2.2
times higher than the benchmark.

MT = 0.0106 4 0.5085log, (A/W + 1)

The error rate was defined as the percentage of the num-
ber of failures over the total number of trials. The overall
error rates were 7.71% for standing situation and 18.81%
for the walking situation, and these are relatively high er-
ror rates. An ANOVA with Greenhouse—Geisser correction
on error rates showed a significant effect of the target width
(Fa.3,47.208 = 40.789, p < 0.001 for the standing situation and
Fy99 = 100.130, p < 0.001 for the walking situation.). As
shown in Figure 13, high error rates were concentrated at the
small target widths of 5.88 and 8.82 mm. The overall error rate
for eight target widths except for two small target widths was
4.45%. The overall error rate was 9.34% for walking, exclud-
ing two small target widths. The selection accuracy decreases
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Figure 14. Some round-trip trajectory samples of a smartphone from
12 participants when standing. The same color is the data from one
participant. A and W denote the target distance (unit: mm) and target
width (unit: mm), respectively.

while walking [8]. We asked the participants to perform the
tasks while walking at 3km/h. At this speed, the error rate
was approximately 17% for the 9.7 mm of target fixed on the
touchscreen from the study of Bergstrom et al. [8] Our task
conditions were more difficult than those in Bergstrom et al.
[8] Our participants performed a peephole target pointing task
rather than fixed target selection on the screen. Additionally,
our participants tapped the targets using the thumb of the hand
that was holding the device rather than the index finger of the
opposite hand. Nonetheless, the error rates were lower than
17% for all the target widths equal to or greater than 11.7 mm.

We analyzed the movements of the device during the peep-
hole selection task to check whether the lag of our system
affected the target selection by the participants. Figure 14
shows the round-trip paths of 12 participants. If the lag was
significant, overshoot would be observed. We calculated the
percentage between the actual path distance and target dis-
tance as Actual_Path_Distance / Target_Distance x 100. The
lagging was not significant because the ratio was 102.05% for
the standing situation.

The study results showed the presence of the following two
design parameter issues in “drag and drop between apps™: 1)
1€ filter parameters and 2) long pressing in the walking situa-
tion. First, we adjusted the 1€ filter parameters (f.,, =0.25,
and 3=0.0008) to be more responsive in this study. The partic-
ipants could complete tasks, which is similar to the selecting
an photo, quickly (3.1bits/s) and accurately (4.63% error rate
of photo-sized targets). Additionally, the moving paths of a
smartphone showed that the participants could aim the target
with low lagging. Second, participants completed the task of
tapping photo-sized targets even while walking with an error
rate of 12.37%. A long-press interaction might have affected
the usability of the application in the walking condition.

DISCUSSIONS AND FUTURE WORK

Recent mobile devices contain built-in 120° WFoV RGB cam-
era [4, 5, 32, 48, 46] and ToF depth camera [25, 27, 31, 47,
38, 51]. However, we could not use these off-the-shelf mobile
devices because the depth camera in OddEyeCam had to be

tilted by 40° with respect to the smartphone in order to cover
the shoulder area. OddEyeCam may be able to use an off-the-
shelf mobile device when a WFoV depth camera, such as the
one in Azure Kinect [36] by Microsoft, becomes available in
a mobile device in the future.

Azure Kinect provides a depth image of 120° FoV. We con-
sidered the possibility of using a WFoV depth camera alone
before we started to work on OddEyeCam. We could iden-
tify no previous work that presented a human-pose-estimation
model using a WFoV depth camera only. The body-tracking
system architecture of Azure Kinect also relies on an IR image
for estimating body joints [34]. A WFoV depth camera in
a mobile device would still need to be used in combination
with a WFoV RGB camera for estimating the body coordinate
system, but will make OddEyeCam a more feasible option for
a mobile device as mentioned above.

We moved the keypoints to the closest point in the FoV of
the depth camera when the cameras were so close to the body
that the keypoints were outside NFoV. This solution worked
satisfactorily in most cases, as confirmed through the three
experiments but, when a user tilts the device (e.g., for the
function for selecting an application in a body-centric folder),
one of the shoulder keypoints could shift excessively. Con-
sequently, the origin of the body coordinate system, which
was defined as the center of the two shoulders, also shifted
and the position-estimation accuracy of OddEyeCam could be
affected. To cope with this problem, we expect that we may be
able to use a keypoint on the neck instead, that is, the origin
can be set as the neck position, and the x-axis can be obtained
using the 3D points from the neck to either shoulder.

The body-tracking module estimates the body keypoints differ-
ently in the images taken from the front and side as depicted
in Figure 7. Combining the output of the body-tracking mod-
ule with that of SLAM-based front-facing tracking could help
OddEyeCam find keypoints in the same position for all direc-
tions and achieve better accuracy.

The current prototype runs a body-tracking model on a desktop.
The pose estimation models, such as OpenPose in this study,
have many lightweight versions [26, 40, 49, 60]. We plan to
utilize one of the body-tracking models for a mobile device
for OddEyeCam in our future work.

CONCLUSION

We proposed a practical inside-out mobile-device tracking sys-
tem, called OddEyeCam, to support body-centric peephole in-
teraction. We evaluated our system through three experiments.
OddEyeCam could track the 3D location of the mobile device
in an absolute manner in both static and mobile environments
with an average error of 4.3 cm. The participants could use
various body-centric peephole interaction scenarios on Odd-
EyeCam, and these required continuous tracking in a large 3D
space around the body of the user. The task of peephole tar-
get selection on OddEyeCam followed Fitts’ law, suggesting
that OddEyeCam could support a natural human-hand move-
ment. OddEyeCam is a practical method that expands the
possibilities of a mobile device to body-centric peephole inter-



action with cameras that are becoming increasingly available
in mobile devices.

ACKNOWLEDGMENTS

This research was supported by Next-Generation Information
Computing Development Program through the National Re-
search Foundation of Korea(NRF) funded by the Ministry of
Science and ICT (2017M3C4A7065963)

REFERENCES
[1] Pablo Ferndndez Alcantarilla, Adrien Bartoli, and
Andrew J Davison. 2012. KAZE features. In European
Conference on Computer Vision. Springer, 214-227.

[2] Pablo F Alcantarilla and T Solutions. 2011. Fast explicit
diffusion for accelerated features in nonlinear scale
spaces. I[EEE Trans. Patt. Anal. Mach. Intell 34,7
(2011), 1281-1298.

[3] Adrian JT Alsmith, Elisa R Ferre, and Matthew R Longo.
2017. Dissociating contributions of head and torso to
spatial reference frames: The misalignment paradigm.
Consciousness and Cognition 53 (2017), 105-114.

[4] Apple. 2019. iPhone 11 Pro. (2019). Retrieved July 9,
2020 from https://www.apple.com/iphone-11-pro/.

[51 Asus. 2019. ROG Phone II. (2019). Retrieved July 9,
2020 from https://wuw.asus.com/Phone/ROG-Phone-II/.

[6] Teo Babic, Florian Perteneder, Harald Reiterer, and
Michael Haller. 2020. Simo: Interactions with distant
displays by smartphones with simultaneous face and
world tracking. In Extended Abstracts of the 2020 CHI
Conference on Human Factors in Computing Systems.
1-12.

[7] Teo Babic, Harald Reiterer, and Michael Haller. 2018.
Pocket6: A 6dof controller based on a simple
smartphone application. In Proceedings of the
Symposium on Spatial User Interaction. 2—10.

[8] Joanna Bergstrom-Lehtovirta, Antti Oulasvirta, and
Stephen Brewster. 2011. The effects of walking speed
on target acquisition on a touchscreen interface. In
Proceedings of the 13th International Conference on
Human-Computer Interaction with Mobile Devices and
Services. 143-146.

[9] Matthias Bohmer, Brent Hecht, Johannes Schoning,
Antonio Kriiger, and Gernot Bauer. 201 1. Falling asleep
with Angry Birds, Facebook and Kindle: A large scale
study on mobile application usage. In Proceedings of the
13th International Conference on Human-Computer
Interaction with Mobile Devices and Services. 47-56.

[10] Michael Brock, Aaron Quigley, and Per Ola Kristensson.
2018. Change blindness in proximity-aware mobile
interfaces. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. 1-7.

[11] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei,
and Yaser Sheikh. 2018. OpenPose: Realtime
multi-person 2D pose estimation using part affinity
fields. arXiv preprint arXiv:1812.08008 (2018).

[12] Géry Casiez, Nicolas Roussel, and Daniel Vogel. 2012.
1€ filter: A simple speed-based low-pass filter for noisy
input in interactive systems. In Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing
Systems. 2527-2530.

[13] Jessica Cauchard, Markus Lochtefeld, Mike Fraser,
Antonio Kriiger, and Sriram Subramanian. 2012. m+
pSpaces: Virtual workspaces in the spatially-aware
mobile environment. In Proceedings of the 14th
International Conference on Human-Computer
Interaction with Mobile Devices and Services. 171-180.

[14] Xiang’Anthony’ Chen, Nicolai Marquardt, Anthony
Tang, Sebastian Boring, and Saul Greenberg. 2012.
Extending a mobile device’s interaction space through
body-centric interaction. In Proceedings of the 14th
International Conference on Human-Computer
Interaction with Mobile Devices and Services. 151-160.

[15] Xiang’ Anthony’ Chen, Julia Schwarz, Chris Harrison,
Jennifer Mankoff, and Scott Hudson. 2014.
Around-body interaction: Sensing & interaction
techniques for proprioception-enhanced input with
mobile devices. In Proceedings of the 16th International
Conference on Human-Computer Interaction with
Mobile Devices and Services & services. 287-290.

[16] NDI Ascension Technology Corporation. 2020. 3D
electromagnetic tracking system. (2020). Retrieved July
9, 2020 from https://www.ndigital.com/about/
ascension-technology-corporation/.

[17] Paul M Fitts. 1954. The information capacity of the
human motor system in controlling the amplitude of
movement. Journal of Experimental Psychology 47, 6
(1954), 381.

[18] George Fitzmaurice and William Buxton. 1994. The
chameleon: Spatially aware palmtop computers. In
Conference Companion on Human Factors in
Computing Systems. 451-452.

[19] George W Fitzmaurice. 1993. Situated information
spaces and spatially aware palmtop computers. Commun.
ACM 36,7 (1993), 39-49.

[20] Jens Grubert, Matthias Heinisch, Aaron Quigley, and
Dieter Schmalstieg. 2015. Multifi: Multi fidelity
interaction with displays on and around the body. In
Proceedings of the 33rd Annual ACM SIGCHI
Conference on Human Factors in Computing Systems.
3933-3942.

[21] Jari Hannuksela, Pekka Sangi, Markus Turtinen, and
Janne Heikkild. 2008. Face tracking for spatially aware
mobile user interfaces. In International Conference on
Image and Signal Processing. Springer, 405-412.

[22] Thomas Riisgaard Hansen, Eva Eriksson, and Andreas
Lykke-Olesen. 2006a. Mixed interaction
space—Expanding the interaction space with mobile
devices. In People and Computers XIX—The Bigger
Picture. Springer, 365-380.


https://www.apple.com/iphone-11-pro/
https://www.asus.com/Phone/ROG-Phone-II/
https://www.ndigital.com/about/ascension-technology-corporation/
https://www.ndigital.com/about/ascension-technology-corporation/

(23]

[24]

[25]

(26]

(27]

(28]

[29

—

(30]

(31]

(32]

(33]

[34]

(35]

Thomas Riisgaard Hansen, Eva Eriksson, and Andreas
Lykke-Olesen. 2006b. Use your head: Exploring face
tracking for mobile interaction. In CHI’06 Extended
Abstracts on Human Factors in Computing Systems.
845-850.

Chris Harrison and Anind K Dey. 2008. Lean and zoom:

Proximity-aware user interface and content
magnification. In Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems.
507-510.

Honor. 2019. View20. (2019). Retrieved July 9, 2020
from https://www.hihonor.com/global/products/
smartphone/honorview20/.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861
(2017).

Huawei. 2019. P30 Pro. (2019). Retrieved July 9, 2020
from
https://consumer.huawei.com/en/phones/p30-pro/specs/.

Hiroshi Ishii and Brygg Ullmer. 1997. Tangible bits:
Towards seamless interfaces between people, bits and
atoms. In Proceedings of the ACM SIGCHI Conference
on Human Factors in Computing Systems. 234-241.

Neel Joshi, Abhishek Kar, and Michael Cohen. 2012.
Looking at you: Fused gyro and face tracking for
viewing large imagery on mobile devices. In
Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems. 2211-2220.

Bonifaz Kaufmann and Martin Hitz. 2012. X-large
virtual workspaces for projector phones through
peephole interaction. In Proceedings of the 20th ACM
international conference on Multimedia. 1279-1280.

LG. 2019a. G8 ThinQ. (2019). Retrieved July 9, 2020
from https://www.lg.com/us/mobile-phones/g8-thing.

LG. 2019b. G8X ThinQ. (2019). Retrieved July 9, 2020
from https:
//www.lg.com/us/mobile-phones/g8x-thing-dual-screen.

Frank Chun Yat Li, David Dearman, and Khai N Truong.

2009. Virtual shelves: interactions with orientation
aware devices. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology.
125-128.

Zicheng Liu. 2020. 3D Skeletal Tracking on Azure
Kinect. (2020). System architecture. p11. Retrieved July
9, 2020 from https://www.microsoft.com/en-us/
research/uploads/prod/2020/01/AKBTSDK.pdf.

Tom Mayer, Susan Brady, Elizabeth Bovasso, Priscilla
Pope, and Robert J Gatchel. 1993. Noninvasive
measurement of cervical tri-planar motion in normal
subjects. Spine 18, 15 (1993), 2191-2195.

[36]

[37

—

[38

—_—

[39

—

[40]

[41]

[42

—

[43]

[44]

[45]

[46]

[47]

Microsoft. 2020. Azure Kinect DK. (2020). Retrieved
July 9, 2020 from
https://www.microsoft.com/en-us/p/azure-kinect-dk/
8pp5vxmdInhg?activetab=pivot%3aoverviewtab.

Akira Ohashi, Yuki Tanaka, Gakuto Masuyama,
Kazunori Umeda, Daisuke Fukuda, Takehito Ogata,
Tatsurou Narita, Shuzo Kaneko, Yoshitaka Uchida, and
Kota Irie. 2016. Fisheye stereo camera using
equirectangular images. In 2016 11th France-Japan &
9th Europe-Asia Congress on Mechatronics
(MECATRONICS)/17th International Conference on
Research and Education in Mechatronics (REM). IEEE,
284-289.

Oppo. 2018. RX17 Pro. (2018). Retrieved July 9, 2020
from https://oppo-nl.custhelp.com/app/answers/detail/
a_id/1365/~/rx17-pro-time-of-flight-%28tof%
29-camera-technology.

OptiTrack. 2020. Motion Capture Systems. (2020).
Retrieved July 9, 2020 from https://optitrack.com/.

Daniil Osokin. 2018. Real-time 2d multi-person pose
estimation on CPU: Lightweight OpenPose. arXiv
preprint arXiv:1811.12004 (2018).

Alejandro Perez-Yus, Gonzalo Lopez-Nicolas, and
Josechu J Guerrero. 2016a. A novel hybrid camera
system with depth and fisheye cameras. In 2016 23rd
International Conference on Pattern Recognition
(ICPR). IEEE, 2789-2794.

Alejandro Perez-Yus, Gonzalo Lopez-Nicolas, and
Jose J Guerrero. 2016b. Peripheral expansion of depth
information via layout estimation with fisheye camera.
In European Conference on Computer Vision. Springer,
396-412.

Milad Ramezani, Debaditya Acharya, Fugiang Gu, and
Kourosh Khoshelham. 2017. Indoor positioning by
visual-inertial odometry. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial
Information Sciences 4 (2017), 371.

Martin Rufli, Davide Scaramuzza, and Roland Siegwart.
2008. Automatic detection of checkerboards on blurred
and distorted images. In 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE,
3121-3126.

Hideo Sakata and Makoto Kusunoki. 1992. Organization
of space perception: neural representation of
three-dimensional space in the posterior parietal cortex.
Current opinion in neurobiology 2, 2 (1992), 170-174.

Samsung. 2019a. Galaxy Notel0 Series:
Note10/Note10+INote10 5GINote10+ 5G. (2019).
Retrieved July 9, 2020 from

https://www.samsung.com/global/galaxy/galaxy-notel®/.

Samsung. 2019b. Galaxy S10 5G, camera specification.
(2019). Retrieved July 9, 2020 from

https://www.samsung.com/us/mobile/galaxy-s10/camera/.


https://www.hihonor.com/global/products/smartphone/honorview20/
https://www.hihonor.com/global/products/smartphone/honorview20/
https://consumer.huawei.com/en/phones/p30-pro/specs/
https://www.lg.com/us/mobile-phones/g8-thinq
https://www.lg.com/us/mobile-phones/g8x-thinq-dual-screen
https://www.lg.com/us/mobile-phones/g8x-thinq-dual-screen
https://www.microsoft.com/en-us/research/uploads/prod/2020/01/AKBTSDK.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/01/AKBTSDK.pdf
https://www.microsoft.com/en-us/p/azure-kinect-dk/8pp5vxmd9nhq?activetab=pivot%3aoverviewtab
https://www.microsoft.com/en-us/p/azure-kinect-dk/8pp5vxmd9nhq?activetab=pivot%3aoverviewtab
https://oppo-nl.custhelp.com/app/answers/detail/a_id/1365/~/rx17-pro-time-of-flight-%28tof%29-camera-technology
https://oppo-nl.custhelp.com/app/answers/detail/a_id/1365/~/rx17-pro-time-of-flight-%28tof%29-camera-technology
https://oppo-nl.custhelp.com/app/answers/detail/a_id/1365/~/rx17-pro-time-of-flight-%28tof%29-camera-technology
https://optitrack.com/
https://www.samsung.com/global/galaxy/galaxy-note10/
https://www.samsung.com/us/mobile/galaxy-s10/camera/

—

—

—_

—_

[48] Samsung. 2019c. Galaxy S10 Series:

S10elS10IS10+IS10 5G. (2019). Retrieved July 9, 2020
from
https://www.samsung.com/global/galaxy/galaxy-s10/.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. 2018. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE conference on computer vision and pattern
recognition. 4510-4520.

Davide Scaramuzza and Zichao Zhang. 2019.
Visual-Inertial Odometry of Aerial Robots. arXiv
preprint arXiv:1906.03289 (2019).

Michael Schoenberg. 2020. uDepth: Real-time 3D
Depth Sensing on the Pixel 4. (2020). Retrieved July 9,
2020 from https://ai.googleblog.com/2020/04/
udepth-real-time-3d-depth-sensing-on.html.

Andrea Serino, Jean-Paul Noel, Giulia Galli, Elisa
Canzoneri, Patrick Marmaroli, Hervé Lissek, and Olaf
Blanke. 2015. Body part-centered and full
body-centered peripersonal space representations.
Scientific reports 5 (2015), 18603.

Garth Shoemaker, Takayuki Tsukitani, Yoshifumi
Kitamura, and Kellogg S Booth. 2010. Body-centric
interaction techniques for very large wall displays. In
Proceedings of the 6th Nordic Conference on
Human-Computer Interaction: Extending Boundaries.

463-472.

David Small and Hiroshi Ishii. 1997. Design of spatially
aware graspable displays. In CHI’97 Extended Abstracts
on Human Factors in Computing Systems. 367-368.

Misook Sohn and Geehyuk Lee. 2005. ISeeU:
camera-based user interface for a handheld computer. In
Proceedings of the 7th international conference on
Human computer interaction with mobile devices &
services. 299-302.

Martin Spindler, Martin Schuessler, Marcel Martsch,
and Raimund Dachselt. 2014. Pinch-drag-flick vs.

spatial input: rethinking zoom & pan on mobile displays.

—_

—_—

—_—

[}

—_—

—

In Proceedings of the ACM SIGCHI Conference on
Human Factors in Computing Systems. 1113-1122.

Ke Sun, Yuntao Wang, Chun Yu, Yukang Yan, Hongyi
Wen, and Yuanchun Shi. 2017. Float: one-handed and
touch-free target selection on smartwatches. In
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems. 692—704.

Desney S Tan, Randy Pausch, Jeanine K Stefanucci, and
Dennis R Proffitt. 2002. Kinesthetic cues aid spatial
memory. In CHI’02 extended abstracts on Human
factors in computing systems. 806—807.

Shan-Yuan Teng, Mu-Hsuan Chen, and Yung-Ta Lin.
2017. Way Out: A Multi-Layer Panorama Mobile Game
Using Around-Body Interactions. In Proceedings of the
2017 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. 230-233.

tensor. 2020. Tensorflow lite human pose estimation.
(2020). Retrieved July 9, 2020 from https://www.

tensorflow.org/lite/models/pose_estimation/overview.

Sandeep Vaishnavi, Jesse Calhoun, and Anjan
Chatterjee. 2001. Binding personal and peripersonal
space: evidence from tactile extinction. Journal of
Cognitive Neuroscience 13,2 (2001), 181-189.

Vicon. 2020. Award Winning Motion Capture Systems.
(2020). Retrieved July 9, 2020 from

https://www.vicon.com/.

Jingtao Wang, Shumin Zhai, and John Canny. 2006.
Camera phone based motion sensing: interaction
techniques, applications and performance study. In
Proceedings of the 19th annual ACM symposium on
User interface software and technology. 101-110.

Wii. 2020. Wiimote. (2020). Retrieved July 9, 2020
from http://wii.com//.

Ka-Ping Yee. 2003. Peephole displays: pen interaction
on spatially aware handheld computers. In Proceedings
of the ACM SIGCHI Conference on Human Factors in
Computing Systems. 1-8.


https://www.samsung.com/global/galaxy/galaxy-s10/
https://ai.googleblog.com/2020/04/udepth-real-time-3d-depth-sensing-on.html
https://ai.googleblog.com/2020/04/udepth-real-time-3d-depth-sensing-on.html
https://www.tensorflow.org/lite/models/pose_estimation/overview
https://www.tensorflow.org/lite/models/pose_estimation/overview
https://www.vicon.com/
http://wii.com//

	Introduction
	Related Work
	Peephole and Body-Centric Interfaces
	Technical Approaches for Mobile Device Tracking 
	IMU-Based
	Face Tracking
	Non-Body Feature Tracking


	Requirements and Design Goals of OddEyeCam
	OddEyeCam Implementation
	Hardware Configuration
	Fusion of the NFoV Depth and WFoV RGB Cameras
	Undistortion of Fisheye Image
	Matching a WFoV Image to a Depth Image

	Mapping Body Keypoints Between Two Images
	Body and Mobile Phone Coordinate System Estimation

	Accuracy Test
	Task
	Procedure
	Results

	Example Applications
	User Study 1: Design-Goal Evaluation through Six Applications
	Task
	Procedure
	Results

	User Study 2: Quantitative characterization of OddEyeCam
	Task
	Procedure
	Participants
	Results

	Discussions and Future work
	Conclusion
	Acknowledgments
	References 

