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Figure 1. Many everyday scene-understanding tasks remain underconstrained when relying solely on conventional video (with audio) input.
We show that adding acoustic field video, a modality that visualizes the spatial distribution of sound, significantly improves multimodal
reasoning. Moreover, the necessary hardware can be practically integrated into many platforms, from smart glasses to robots.

Abstract

We introduce and explore a new multimodal input repre-
sentation for vision–language models: acoustic field video.
Unlike conventional video (RGB with stereo/mono audio),
our video stream provides a spatially grounded visualiza-
tion of sound intensity across a scene, offering a new and
powerful dimension of perceptual understanding. Our real-
time pipeline uses low-cost beamforming microphone ar-
rays — already common in smart speakers and increas-
ingly present in robotics and XR headsets — yet this sens-
ing capability remains unutilized for scene understanding.
To assess the value of spatial acoustic information, we con-
structed an evaluation set of 402 question–answer scenes,
comparing a SOTA VLM given conventional video with
and without paired acoustic field video. Results show a
clear and consistent improvement when incorporating spa-

tial acoustic data; the VLM we test jumps from 38.3% cor-
rect to 67.4%. Our findings highlight that many everyday
scene understanding tasks remain underconstrained when
relying solely on visual and audio input, and that acous-
tic field data provides a promising and practical direction
for multimodal reasoning. A video demo is available at
https://daehwakim.com/seeingsound

1. Introduction

Vision–language models (VLMs) demonstrate remarkable
performance across a wide range of multimodal reason-
ing tasks, from visual question answering to embodied dia-
logue. However, despite their growing sophistication, most
VLMs remain grounded in just two sensory modalities: vi-
sual imagery (RGB video) and non-spatial audio (typically
stereo streams). This leaves a critical gap in perceptual un-
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derstanding: the ability to reason about where, and thus
from what objects, sounds are being generated within a
scene.

Sounds in natural environments are often byproducts of
physical processes and human activity: engines hum, elec-
tronics beep, fans blow, doors creak, and kitchen appli-
ances whir. These distributed auditory cues accompany spe-
cific object states, motions, or interactions, providing valu-
able implicit information about the world. For example, a
boiling kettle indicates temperature and phase change; a
whirring fan reveals mechanical activity; muffled speech
implies distance or occlusion. Sound, therefore, is not
merely an auxiliary sensory channel, it is a diagnostic signal
of a scene’s underlying dynamics. Localizing these acous-
tic signatures provides a powerful complementary signal to
visual data, particularly for reasoning about state, activity,
and causality.

For this reason, spatial hearing plays a central role in
human perception, enabling us to locate sound sources, re-
solve ambiguities in complex environments, and integrate
auditory cues with vision to infer scene structure. While
recent multimodal research has incorporated audio spectro-
grams or raw waveforms, these representations encode fre-
quency and time but lack explicit spatial grounding. As a
result, current models struggle with questions requiring the
linkage between sound and location. This is especially true
for generic or repeated sounds, such as motors humming,
fans blowing, or electronics beeping, which could originate
from many objects within a scene. In such cases, audio
alone cannot resolve the source (see Figures 1, 2 and 4).

To address this gap, we introduce a new input modality
for multimodal understanding: acoustic field video. Each
frame encodes the spatial distribution of acoustic energy
across a scene, effectively visualizing where sounds occur.
Our real-time pipeline generates this stream using a micro-
phone array and well-established beamforming algorithms,
producing acoustic maps that are spatially and temporally
aligned with RGB video frames and conventional audio.
This alignment yields a rich, multimodal representation that
unifies visual appearance, auditory content, and the spatial
structure of scene sounds. While acoustic fields are not new
(often referred to as sound pressure level (SPL) maps or re-
lated terms in acoustics), this is the first work to employ
them as direct input to VLMs and to evaluate their utility
for scene understanding and reasoning.

Our implementation requires low-cost microphone ar-
rays, hardware already common in smart speakers and in-
creasingly in domains such as robotics and XR headsets.
Compared to other extended sensory modalities explored
for use with VLMs — most notably thermal imagery [9, 13]
— microphone arrays built from commodity MEMS com-
ponents are inexpensive, small, and power efficient (e.g.,
the ICS-41350 MEMS microphone costs under $0.75 in

volume, measures 3.5×2.65×0.98 mm, and consumes just
185 µA in its always-on mode). This allows for microphone
arrays to be integrated into even highly-constrained worn
devices, such as Meta’s new Ray-Ban Display Glasses,
which contain a six-microphone array.

To demonstrate the potential of this approach, we con-
structed a diagnostic benchmark of 402 question–answer
(QA) pairs that span domestic, commercial, and industrial
scenes. We open source both this dataset and our soft-
ware pipeline. For evaluation, we use Gemini 2.5 Pro, a
representative state-of-the-art VLM, to compare QA per-
formance using traditional RGB+sound inputs against the
same data augmented with acoustic field video. The addi-
tion of this modality yields substantive improvements (from
38.3% to 67.4% accuracy), particularly for questions in-
volving localization, spatial attribution, and multi-source
reasoning—tasks often unsolvable from RGB and stereo au-
dio alone.

2. Related Work

2.1. Multimodal and Vision-Language Models
Recent years have seen rapid progress in large-scale vi-
sion–language models (VLMs) that jointly process vision
and text. Models such as Flamingo [2], Kosmos-2 [31],
LLaVA [20], and Gemini learn cross-modal representations
that support image captioning, visual QA, and grounded
dialogue without task-specific supervision. Video-centric
VLMs further extend this to temporal reasoning and audio
for open-ended video QA [7, 29], and AVQA systems that
incorporate mono-channel audio [15, 19, 37] further high-
light the value of combining sound and vision for scene un-
derstanding.

While these models achieve impressive performance,
they remain primarily bimodal, relying on static RGB im-
ages or video streams and text. Audio, when included, is
typically represented as 1D waveform embeddings or spec-
trograms that encode temporal–frequency structure but lack
explicit spatial grounding. Consequently, even advanced
VLMs are limited in their ability to infer where in a scene a
sound originates, a key factor in human spatial understand-
ing and embodied perception. Our work complements this
line of research by introducing a spatially grounded acoustic
representation that can be seamlessly integrated into VLM
pipelines, extending their perceptual range beyond visual
and textual modalities.

2.2. Modalities Beyond RGB Video & Audio
A parallel line of research explores how additional modali-
ties—such as mono/stereo audio, depth, thermal, and mo-
tion—can complement visual and linguistic cues. Au-
dioSet [8] and its derivatives provide large-scale au-
dio–visual corpora for cross-modal pretraining, while mod-



els such as SoundSpaces [5], ImageBind [9], Language-
Bind [40], and AVE [36] explore joint embeddings between
text/vision to other modalities for localization, retrieval,
and semantic understanding. These efforts have shown that
sound enriches scene understanding by providing temporal
continuity, semantic cues, and motion-related context not
easily captured by vision alone.

However, most existing audio–visual–language mod-
els treat sound as a non-spatial signal—typically as mel-
spectrograms or learned audio embeddings aggregated over
time. This approach captures what is heard, but not where
it occurs. As a result, models struggle with questions or
reasoning tasks that depend on spatial localization, multi-
source attribution, or occlusion relationships. In contrast,
our proposed acoustic field (AF) video introduces an ex-
plicitly spatial acoustic modality, derived from beamformed
microphone arrays, that visualizes sound energy across a
scene. This enables multimodal models to reason about
both the identity and spatial distribution of sound sources,
bridging the gap between existing audio–visual fusion ap-
proaches and fully spatialized multimodal perception.

Methods such as Progressive Spatio-Temporal Percep-
tion for Audio-Visual Question Answering [19] model tem-
poral dynamics and cross-modal correlations to improve
AVQA performance. Bridging Audio and Vision [15], ex-
plores self-supervised methods to associate sounds with
their visual sources in video. While these approaches suc-
cessfully link objects and their auditory signatures, they
treat audio as a non-spatial signal, limiting the ability to
reason about precise sound locations or objects. As a result,
if there are multiple objects in the scene of the same type,
there can be confusion. Likewise, if a sound is generic, such
as a motor hum, it may not be possible to guess which de-
vice is producing the sound in a complex scene such as a
kitchen or workshop. The main example offered in [15] is
two clarinet players, which start at different times, and thus
can rely on visuo-temporal data for disambiguation. But
this crucial visual information is not readily available in a
wide range of scenes, especially non-human scenes. When
actions are not visible, such as a computer fan running at
max speed in a server rack, or a leaking faucet or toilet,
there will likely be confusion.

In contrast, our approach leverages real-world live sen-
sor data to derive spatial acoustic maps that explicitly en-
code the spatial distribution of acoustic energy, enabling
multimodal models to disambiguate. To our knowledge,
no prior work has explored using acoustic field video for
audio-visual question answering.

2.3. Audio Scene Understanding

Beyond multimodal VLMs, a large body of work studies
audio scene understanding without video. Audio-only ap-
proaches tackle acoustic scene classification, event detec-

tion, and audio-driven video understanding, including pre-
dicting visual motion or learning visual features from sound
in a self-supervised way [1, 3, 4, 10, 17, 39]. Audio QA
benchmarks such as AVQA [18] further require models to
answer semantic questions about sound events and envi-
ronments from spectrograms or waveforms. These meth-
ods show that sound alone carries rich information about
activities, materials, and object states, but they operate in
non-spatial feature spaces and are not designed to interface
directly with general-purpose VLMs.

When video is available, most work emphasizes sound
source localization and separation using vision. Early
audio-visual correspondence methods such as “Look, Lis-
ten and Learn” [3] and “Sound Source Localization in the
Wild” [22] localize sounding objects from unconstrained
video, and later approaches refine this with contrastive
learning and self-supervision for robust localization [6, 16,
21, 21, 27, 28, 30, 34, 35, 35, 38]. These pipelines typ-
ically output a heatmap or mask used for detection, re-
trieval, or sound isolation, rather than as a primary input
to a reasoning system. In contrast, we derive real-time
acoustic field (AF) video from beamformed microphone ar-
rays and feed this spatially explicit sound-intensity map di-
rectly into an off-the-shelf VLM alongside RGB video, al-
lowing us to study how explicitly spatialized acoustics im-
prove zero-shot scene understanding and question answer-
ing rather than localization or separation alone.

3. Implementation
We now describe the main components of our system, in-
cluding both hardware and software. Our pipeline is made
open source at https://www.github.com/anonyimized-for-
review.

3.1. Hardware
We note that many contemporary devices already contain
microphone arrays. For instance, the Apple HomePod
includes a six-microphone array [14]), the Azure Kinect
DK camera contains a seven-microphone array [25], and
Meta’s recently announced Ray-Ban Display XR glasses
have a six-microphone array [24]. Of course, many research
systems have experimented with microphone arrays, from
robots [23] to smartwatches [12]. Likewise, we envision
our approach being used on multiple different platforms,
including mobile robots, smart environment infrastructure,
and worn devices with ego-centric views (see examples in
Figure 1 and Section 4).

As a proof of concept, we use an off-the-shelf 16-channel
MiniDSP UMA-16 v2 microphone array [26], seen in our
Video Figure. The array measures 132×202×18 mm and
enumerates as a multichannel microphone under the stan-
dard USB Audio Class (UAC) protocol. To this hardware,
we add a USB webcam at the center with a 72° diagonal



field of view. Both the microphone array and webcam con-
nect to a 2024 MacBook Air M3, on which all processing
(other than the VLM) occurs in real time. In Section 3.6,
we breakdown sources of latency.

3.2. Conventional RGB Video and Audio Streams
For RGB video, we use frames streamed from the USB
webcam, downscaled to 640×360. For audio, we create
a stereo audio stream (44.1 kHz) using the upper-left and
upper-right microphones on our array (12.6 cm apart).

3.3. Acoustic Field Video Software Pipeline
Our software pipeline is agnostic to the microphone element
count and geometry of the array. The latter is defined in an
XML file read by our software at runtime. The sixteen-
channel microphone array we used implemented the UAC
protocol, allowing for plug-and-play operation. Audio was
sampled at 44.1 kHz, with a chunk size of 2048, and thus
our pipeline runs at ∼22 FPS (we discuss latency in Sec-
tion 3.6).

For acoustic beamforming, we utilize the Multiple Sig-
nal Classification (MUSIC) algorithm [33] as implemented
in Acoular Python [32] (1,024-point FFT, Hann window,
50% overlap). As a frequency-domain method, MUSIC re-
quires a discrete set of frequencies for analysis. We there-
fore selected four center frequencies (2, 4, 6, and 8 kHz)
that span a broad portion of the acoustic spectrum rele-
vant to human activities and everyday environments. To
compensate for frequency-dependent gain differences and
suppress background noise, we first subtract different noise
floor thresholds (18, 20, 23, and 27 dB) and then clip each
SPL map to a narrow top dynamic range (0.2, 0.2, 0.5, and
0.5 dB below the maximum observed value) for our 2, 4,
6, and 8 kHz SPL maps, respectively. We then average the
four resulting maps to produce a single composite acoustic
field. To stabilize temporal fluctuations, we apply an eight-
frame median filter (approx. 370 ms). This resulting map
is rendered with a jet colormap, alpha-blended onto a gray-
scaled copy of the video frame. The latter is streamed as our
acoustic field video for downstream vision-language mod-
eling, with a resolution of 640×360, matching our RGB
video stream.

3.4. Zero-shot Scene Understanding
We use Gemini-2.5-Pro as a representative state-of-the-
art multimodal understanding model. Beyond a language
prompt, we use two input formats. First is RGB video
+ stereo audio, which we refer to as Conventional Video.
Second, we have the RGB video + acoustic field video, ar-
ranged as a stacked pair, plus stereo audio, which we refer
to as Conventional + Acoustic Field Video.

We interface with Gemini using the google-generativeai
Python API [11]. We use the following prompt:

Be definitive in your answers. Avoid hedging words like
"potentially", "possibly", or "probably", and other
speculative language. Also, answer concisely; one or a
few sentences at most. I am giving you a video clip with
audio of a scene.

The video clip has two synchronized visualizations of
the same camera view. The top is the standard video of
the scene. Bottom is the same video, but overlaid with a
sound pressure map (jet color scheme, e.g., blue is no
or low sound, and oranges and reds are louder sound
sources). The sound pressure map shows where sounds are
coming from. Your answer should not explicitly mention
the video or the sound pressure map.

Using this information, I want you to answer the
following question:

Only the black portions of the prompt are used when in-
putting Conventional Video (for baseline evaluation pur-
poses, discussed in Section 5), and the complete prompt
(black and blue portions) is used when inputting Conven-
tional + Acoustic Field Video.

3.5. Live Mode
We also take advantage of Gemini 2.5 Pro’s “Talk to Gem-
ini Live” mode to ingest a live audio-video stream, which
could come from a robot, AI glasses, etc. In our case, we
pass Gemini our Conventional + Acoustic Field Video. We
use the same prompt as the prior section, sans the very last
sentence. In this way, it is open-ended for the user to define
a desired assistive use. They could say, for instance, “let
me know if there are any hazards while I am working”, or
“keep me informed about the status of my 3D print job”.
We offer some illustrative examples in our Video Figure.

3.6. Latency
Our approach is comparatively lightweight with modest la-
tency; VLM token generation dominates any interaction.
There are two main sources of latency in our system: sensor
latency and beamforming computation. Starting first with
sensors: the USB Audio Class (UAC) protocol is highly
optimized on modern operating systems, with just a few
milliseconds of latency, while USB Video Class (UVC) de-
vices have on the order of tens of milliseconds of latency.
Our beamforming stage (with four runs of the MUSIC al-
gorithm) takes 58 ms on our 2024 MacBook Air M3. These
two main processes, plus various other smaller latencies
(e.g., moving video/audio frames into Python, rendering the
acoustic field onto live video for debugging) combine for a
total latency of around 90 ms. We note our Python-based
pipeline is not heavily optimized, and this reported latency
should be considered an upper bound.

4. Potential Applications
We envision AI agents augmented with acoustic field sens-
ing being valuable across a wide range of scenarios. Below
we outline several representative use cases that illustrate the
potential of this modality to enhance perception, interac-
tion, and situational awareness. Please also see our Video



Figure 2. Top: Example scenes (conventional RGB and acoustic field still frames shown) drawn from our test set. Bottom table: Example
prompts, along with output from Gemini given either Conventional Video or Conventional + Acoustic Field Video as input.

Figure for additional examples using our live-mode imple-
mentation.

4.1. Worn Devices (Ego-Centric View)

Worn devices such as AI pins and XR glasses have a unique
ego-centric view onto the world. With acoustic field video,
such systems could infer where sounds originate relative to
the user, allowing them to better understand and monitor ac-
tivities, interactions, and context. For example, AI glasses
could proactively let users know “the kettle is boiling” (Fig-
ure 1 middle), “you left the stove on” (Figure 2 H), and “you
should turn on the fume extractor while soldering” (Figure 4
I).

4.2. Mobile Robots

For autonomous mobile robots, spatialized acoustic under-
standing enhances both perception and interaction. Robots
equipped with microphone arrays can identify and localize
sounds that indicate human presence, mechanical operation,
or environmental changes. For instance, a household robot
could infer that a laundry machine has finished its cycle,
or that someone called its name from another room (Fig-
ure 1 bottom). In workplace settings, acoustic cues such as
machine vibrations, dripping taps, alarms, can reveal oper-
ational states that are difficult to capture visually (Figure 1
& 2).

4.3. Smart Speakers & Smart Environments
Although fixed in position, smart speakers, security sys-
tems, and other ambient IoT infrastructure occupy ideal
vantage points for continuous monitoring of activity in
homes and workplaces. When augmented with vision and
acoustic field sensing, these systems could move beyond
simple sound detection (e.g., breaking glass alert) to spa-
tial reasoning (e.g., user accidentally dropped a glass). For
example, a smart speaker could localize a crying infant, de-
tect if a stove burner was left on (Figure 2 H), track the
usage of appliances (Figure 1 middle), monitor water con-
sumption (Figure 2 B), or identify noise from a kitchen
appliance (Figure 4 K). In office or factory environments,
acoustic fields could integrate with building systems such
as HVAC or lighting to adapt to occupancy and activity lev-
els. Moreover, these maps could inform nearby robots or
embodied agents, allowing a cooperative ecosystem where
devices share a common, spatially grounded understanding
of sound events in their surroundings.

5. Evaluation

5.1. QA Scene Data Collection
There is no public data set that contains paired conven-
tional video and acoustic field video. It may be possible
to partially simulate such data using audiovisual segmenta-



tion [34, 35], however results can be inconsistent if there are
multiple objects of the same class in the scene or if sounds
are generic (hums, vibrations, whirs, electronic beeping,
etc.) and could be attributed to more than one present ob-
ject. For this reason, we do not believe there is a suitable
substitute for real-world data at this time, and as such, we
created our own dataset for evaluation, which we also make
freely available for replication and advancement.

All recordings were captured using the hardware and
software described in Section 3. One capture instance con-
sists of a synchronized, five-second triplet of data: conven-
tional (RGB) video, acoustic field video, and stereo audio.
Data collection was conducted in ten diverse environments:
bathroom, bedroom, kitchen, office, office kitchenette, util-
ity room, electronics room, fabrication workshop, parking
lot, and a road. We did not control for background noise,
and so most of our data contains, e.g., HVAC noise and
background chatter.

We endeavored to curate a diverse range of questions
that would be applicable to different use cases (see Sec-
tion 4). For all instances captured, we asked three com-
mon questions: First, simulating a mobile robot use case,
we asked: “When the user says ‘please stop that’ or ‘please
check that’, what action would you take?”. Targeting more
generic scene understanding, we also asked: “What is hap-
pening in the scene?”, and “What is the noise?”. In addi-
tion to these three common questions, we also included at
least one (max five) custom scene-specific queries, such as
in the office kitchenette: “What stage of coffee making are
we in?”. In total, our evaluation set contains 402 QA in-
stances.

5.2. Procedure
To test whether adding acoustic field video improves zero-
shot scene understanding, we compare two input modali-
ties: Conventional Video (i.e., RGB video + stereo audio;
baseline) vs. Conventional + Acoustic Field Video (ours).
The task is to answer a question for a given five-second
question-scene instance. We use the same model, Gemini
2.5 Pro, for both conditions (see prompt in Section 3.4). To
prevent context carryover and standardize quality, we ini-
tialize a new inference session for each instance. As we
have 402 instances, tested with two input modalities, our
procedure generated 804 QA instance pairs. Including up-
loading data to Gemini, this automated process took around
3 hours.

5.3. Human Raters
To evaluate the quality of VLM output, we recruited three
human raters (mean age = 20.3; two identified as women).
We developed a basic web interface to facilitating process
all of the data. For each QA instance, raters (wearing head-
phones) watched the five second conventional (RGB) video

clip including stereo audio, along with a short ground-truth
text description and question about the scene. Raters could
re-play the video as they saw fit to understand each scene
and question being asked.

Once satisfied they understood the scene, the raters pro-
ceeded to evaluate the correctness of a VLM-generated an-
swer. Two buttons were offered: ”correct” and ”not ex-
actly”. The raters were told during orientation that an an-
swer ”should only be marked ’correct’ if it matches the
ground truth without contradictions, omissions, or vague
language,” while answers with ”with wrong or vague re-
sponses should be marked as ’not exactly’.” Upon select-
ing one of these options, they were shown a second VLM-
generated answer, and again told to assess correctness. The
presentation order of the two input modality conditions was
randomized and counterbalanced. Lastly, for the same QA
instance, raters were shown both answers side-by-side and
asked: ”Which do you believe is the better answer?”. They
could select the first answer, second answer, or equal pref-
erence. For final labels, we took the raters’ majority vote;
i.e., for an answer to be deemed correct, incorrect, or pre-
ferred, two of three or three of three raters had to rate it as
such. There is a potential corner case with this methodol-
ogy, which is a three-way tie between preference for answer
A, answer B, and equal preference, but this never occurred
in our data.

The raters completed this task independently, which took
around 4 hours to complete. In total, our raters provided
3618 responses (402 QA instances × 3 ratings × raters).
We see substantial agreement on correctness for both input
modalities: Fleiss’ κ = 0.72 for Conventional Video and
κ = 0.65 for Conventional + Acoustic Field Video. When
our raters had a preference between the two answers, we see
a similarly high inter-rater reliability, with a Krippendorff’s
α of 0.78.

6. Results & Discussion
We now present our main findings, also summarized in Fig-
ure 3, before moving to the discussion.

6.1. QA Scene Accuracy
Across all 402 QA instances, the baseline Conventional
Video input condition was rated as 38.3% correct, while
our Conventional + Acoustic Field Video input condition
was rated as 67.4% correct. The magnitude of this increase
strongly suggests that acoustic field data materially helps
the VLM disambiguate sound sources and relate audio evi-
dence to the visual scene.

Breaking down this data a different way, we see that in
24.4% of QA instances, the raters believed both VLM in-
put conditions were incorrect, and 30.1% of the time raters
believed both input conditions were correct. More inter-
esting is when answers derived from Conventional Video



Figure 3. QA scene understanding with and without acoustic field
video. Left: Overall answer accuracy when the VLM sees only
Conventional Video (CV) versus Conventional + Acoustic Field
Video (CV+AFV); Middle: Breakdown of correctness. Right: Hu-
man raters’ answer preferences.

were rated as correct, while answers from the Conventional
+ Acoustic Field Video were rated as incorrect (8.4% of
QA instances). However, a much larger proportion shows
the opposite behavior, where answers from the VLM given
Conventional + Acoustic Field Video were rated as correct
while the Conventiona Video input was wrong (37.3%).

6.2. Answer Preference
When comparing answers from the two VLM input con-
ditions side-by-side, answers derived from Conventional
Video input were preferred in 14.9% of the time, while an-
swers from Conventional + Acoustic Field Video input were
preferred 52.0% of the time (with the remaining 33.1% be-
ing judged as equally valid).

6.3. Improved Attention
We observed that when an acoustic field video is provided,
the VLMs attention improved, leading to both more correct
and more succinct answers (see examples in Figure 4, I-
M). The VLM also tended to elevate the active object to the
beginning of its reply. Lastly, we also saw the absence of
sound in the acoustic field being utilized. For example, as
can be seen in Figure 4 I, where a user is soldering without
an exhaust fan running, the VLM is able to reason that the
fan is off using the acoustic field.

6.4. Failure Cases
We also noted some interesting failure cases, a few of which
we highlight in Figure 4, N-P. As reported in Section 6.1,
only in 8.2% of the QA instances did the VLM get the cor-
rect answer using Conventional Video, but got the wrong
answer using Conventional + Acoustic Field Video. We
analyzed these 33 failure instances for high-level themes.
We found occasional misclassifications of sounds — for in-
stance, the humming of a running microwave was described

as ”beeping” and ”finishing”. We also observed instances of
misattributions of sound — for example, at the beginning of
one clip, a parked car honks its horn which is clearly visi-
ble in the acoustic field video; however, another car drives
through the scene in the second half of the clip (which is
very salient) and the honk is incorrectly attributed to the
moving car. Finally, we saw in some clips with quiet but
audible background noise (especially from HVAC) that the
model sometimes attributed activity to inactive objects in
the scene, even without a cue present in the acoustic field
(e.g., an inactive 3D printer sitting on a table). It may be
that prompt engineering could resolve some of these issues.

7. Limitations & Future Work
While our results demonstrate clear benefits of incorporat-
ing acoustic field video into multimodal reasoning, there are
several limitations of note. First, our evaluation dataset,
although diverse in scene type and acoustic configuration,
remains modest in size and limited to real-world record-
ings from a single array geometry. Broader datasets span-
ning varied microphone arrangements, room impulse char-
acteristics, more outdoor environments, and cluttered multi-
source scenes will be important to generalize our initial
findings.

We also note that our implementation uses frequency-
domain MUSIC beamforming with a small set of discrete
analysis frequencies. Although this approach offers high
angular resolution and robustness, it imposes computational
overhead and a fixed spatial grid that may limit responsive-
ness in dynamic scenes. Moreover, MUSIC relies on nar-
rowband assumptions and is known to degrade in low-SNR
settings, highly reverberant environments, or when sound
sources exhibit broad spectral content not well captured by
our chosen frequency bands. Future work could explore al-
ternative wideband beamforming techniques, neural beam-
formers, learned spatial acoustic encoders, or hybrid clas-
sical–neural architectures that jointly optimize spatial and
semantic representations. Nonetheless, MUSIC was suffi-
cient for our proof-of-concept implementation (i.e., the goal
of this work was not to make advances in beamforming, but
rather explore the potential utility of the signal). More ad-
vanced methods would likely unlock further accuracy gains
against conventional video inputs.

Additionally, while acoustic field video provides explicit
spatial grounding, VLMs ingest it only through conven-
tional visual pathways. As a result, the model performs no
audio–acoustic fusion at the level of raw spatial features;
instead, spatial sound structure must be inferred from a col-
orized overlay. Training VLMs (or dedicated multimodal
encoders) to directly process acoustic fields in a native ten-
sor format may unlock significant performance gains and
reduce reliance on handcrafted visualization choices (e.g.,
colormaps, clipping thresholds). Similarly, joint training



Figure 4. Examples of good attention and failure cases (separated by black horizontal rule). Top: Example scenes (Conventional + Acoustic
Field Video) drawn from our test set. Bottom table: Example prompts, along with output from Gemini given either Conventional Video or
Conventional + Acoustic Field Video as input.

on synchronized RGB, audio, and acoustic field data could
yield richer cross-modal bindings and more consistent attri-
bution of sounds to objects.

Finally, although we evaluate zero-shot performance,
in-the-wild deployment introduces additional challenges:
user motion with wearable devices, array self-noise, user-
motion generated noise, and device heterogeneity within
and across manufacturers. Understanding the sensitivity of
acoustic-field-driven reasoning to these factors, and devel-
oping calibration-free or self-adaptive techniques, remains
an open question for deployment.

8. Conclusion

We presented acoustic field video as a new spa-
tially grounded acoustic modality for multimodal vi-
sion–language reasoning. By visualizing where sound orig-
inates and aligning this information with RGB video and
audio, acoustic field video enables VLMs to connect au-
ditory evidence to specific objects and locations in a scene.
Using a real-time, low-cost beamforming pipeline and a 402
QA-instance benchmark, we show that augmenting conven-
tional RGB+audio inputs with acoustic field video yields

substantial gains in zero-shot scene understanding and is
consistently preferred by human raters. As microphone ar-
rays continue to proliferate across smart speakers, robots,
and wearable devices, our results highlight acoustic field
video as a practical and powerful path toward more percep-
tually grounded multimodal intelligence.
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