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Figure 1: A conceptual illustration of SoundScroll system. (User action) A sliding finger on the surface creates the vibration
induced by friction. The vibration propagates on the skin and in the air. (Friction sound spectrogram) Wrist-worn acoustic
sensors capture the vibration. (Contact + motion estimation) With dual-channel audio measurements, our system estimates the
moving finger’s contact state and sliding speed. (User input) Finally, users can control user interfaces such as scrolling a list.

ABSTRACT
Smartwatches have firmly established themselves as a popular wear-
able form factor. The potential expansion of their interaction space
to nearby surfaces offers a promising avenue for enhancing input
accuracy and usability beyond the confines of a small screen. How-
ever, a key challenge is in detecting continuous contact states with
the surface to inform the start and end of stateful interactions. In
this paper, we introduce SoundScroll, enabling a rapid and precise
determination of contact state and fingertip speed of sliding finger.
We leverage vibrations from friction between a moving finger and
a surface. Our proof-of-concept wristband captures a dual-channel
vibration signal for robust sensing, considering both on-skin and in-
air components. Our software predicts a finger sliding state as fast
as 20 ms with an accuracy of 93.3%. Augmenting prior approaches
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detecting tap events, SoundScroll can be a robust, low-latency, and
precise contact and motion sensing technique.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mobile comput-
ing systems and tools.
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1 INTRODUCTION
Smartwatches have become a popular form factor and are ubiqui-
tous in the consumer market. Despite their inherent advantages in
portability and wearability, their input space is confined to a small
screen. Over the last decade, researchers have expanded the inter-
actable surface area to near-hand surfaces [16, 34, 40, 59] enabling

https://orcid.org/0000-0002-7373-9477
https://orcid.org/0000-0001-7715-7557
https://orcid.org/0000-0003-3745-3516
https://orcid.org/0000-0003-4962-751X
https://orcid.org/0000-0002-2059-3558
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3675095.3676614
https://doi.org/10.1145/3675095.3676614
https://doi.org/10.1145/3675095.3676614


ISWC ’24, October 5–9, 2024, Melbourne, VIC, Australia Daehwa Kim, Eric Whitmire, Roger Boldu, Wolf Kienzle, & Hrvoje Benko

touchpad-like interactions. This has ergonomic advantages [3, 26],
helps precise selection with closed-loop touch feedback [23], and
provides contextually adaptive surfaces [41]. A plethora of sensing
approaches have been explored to enable this, ranging from camera-
based solutions [21, 32, 45, 54, 56], motion sensor [16, 34, 40, 59],
electric [17], to electromagnetic field [2, 35, 52] sensing.

Despite significant advancements, accurately identifying the du-
ration of an interaction without instrumenting the environment
remains challenging. This identification is crucial for enabling state-
ful touch-based input, which facilitates a range of dynamic inter-
actions such as list scrolling, drag-and-drop, and two-dimensional
pointing [1]. These interactions are essential for effective user inter-
faces in modern applications. Accurate detection requires knowing
whether a fingertip is currently interacting with the surface (e.g.,
scrolling, dragging) or has stopped. Previous wristband technolo-
gies have primarily been limited to sensing tap events; however,
reliably identifying the end of interaction (stopping scroll or touch-
up events) has remained a considerable challenge [11]. Inaccurate or
delayed detection of touch events can lead to a phenomenon known
as the "serif effect" [37]. In the context of dragging interactions, this
effect can cause unintended backscrolling during repeated scrolling
gestures, leading to a frustrating user experience. This underscores
the need for a reliable, low-latency sensing source that detects
the continuous contact state of a finger to ensure a complete and
compelling user experience.

In response, we propose SoundScroll, a wristband solution to
continuously detect contact states of sliding fingers for supporting
stateful touch interaction. SoundScroll relies on the mechanical en-
ergy produced when a finger slides over a surface to detect contact
andmotion. This energy induces vibrations through the skin and air,
and SoundScroll captures these vibrations with two microphones—
skin-contact and in-air microphones. Note, as this vibration is key
in SoundScroll, it works while a finger is in motion. We designed
a proof-of-concept wristband prototype and verified its accuracy
across several common surface materials and two warm postures
along with various users and speed conditions. We designed a proof-
of-concept wristband prototype and verified its accuracy across
several common surface materials and two warm postures along
with various users and speed conditions. We designed a proof-
of-concept wristband prototype and verified its accuracy across
several common surface materials and two warm postures along
with various users and speed conditions. We summarize the main
contributions of this paper:

(1) A wristband sensing solution that continuously detects the
sliding finger’s contact state to inform the start and end of
stateful user inputs, especially for scrolling interaction.

(2) A fast estimation of finger contact state in as little as 20 ms.
(3) A multi-task model that classifies finger contact while simul-

taneously regressing an instantaneous fingertip speed.
(4) The evaluations that show the resilience of SoundScroll to

four surface types and two common arm postures compared
to a kinematics approach.

In the rest of the paper, we review relevant usability issues and
technical approaches. Then, we describe the principle of friction-
based sensing. Subsequently, we present the SoundScroll prototype
and the results of the associated user studies. Finally, we discuss

the future opportunity to integrate our technique into existing
technologies.

2 RELATEDWORK
2.1 Non-Wristband Solutions
While a computer vision method with a head-mounted camera is
accurate for tracking the finger’s 2-dimensional position, it often
struggles to distinguish whether the finger is touching a surface
or hovering just a few millimeters above it [12, 54]. Recent work
embedded an active illuminant to the wristband [21, 46] to improve
surface contact detection. However, occlusion and field-of-view lim-
itations persist as challenges. Other popular approaches instrument
parts of the user’s finger directly, including the fingerpad [31, 56],
fingernail [11, 40], or a ring [16, 17, 22, 34, 35, 49, 51]. Among them,
an electrical method [17, 51, 58, 58] detects contact loops for contact
sensing but is limited to the body or surfaces with specific electrical
properties. One can also use a ring with a motion sensor, such as
an inertial measurement unit (IMU). This method adopts a kine-
matics approach, leveraging the finger joints’ physical structure to
gather crucial information [16, 39]. The methods, however, rely on
finger-instrumented devices, which can encumber and restrict the
dexterity of the hand for manual activities [42] or reduce tactile
sensitivity.

2.2 Wristband Solutions
Smartwatches have been successfully established as a friendly form
factor in the consumer market. Sensing the finger using sensors
embedded in the wristband becomes more desirable for users [55].
Although finger-joint tracking with wrist-worn sensors has been
demonstrated [5, 14, 18, 19, 24, 53], knowing the finger’s contact
condition with the world remains a separate challenge. Optical
methods, such as employing an IR light and a camera positioned
under the wrist [32, 38, 50], offer a means to detect finger con-
tact by identifying illumination changes. However, this method is
sensitive to curved or uneven surfaces, varying illumination condi-
tions, and the camera’s angle of attack, making this less suitable
for dynamic mobile environments. In contrast, acoustic and motion
sensors have well shown their promise as units to inform touch
for the wristband [8, 13, 26, 29, 32, 44]. However, the majority of
wristband solutions beyond on-skin interactions have focused on
detecting discrete events, particularly simple taps. Skinput [29] uses
an armband and bio-coustics transmission to enable on-skin tap
interaction. TapID [26] capture bio-acoustic signal created when
a user tap different fingers on the surface and identify a tapping
finger.n Acustico [8] implemented a wrist-worn device that can
resting on the table during interaction and enables tap and swipe
detection. Similarly, Anywhere Surface Touch [32] detects left and
right swipes and taps acoustic waves propagating through a desk
along with camera data. In contrast, SoundScroll has several dis-
tinct advantages. Firstly, SoundScroll utilizes vibrations propagating
through skin and air, which allows for use without requiring the
user’s wrist to remain stationary on a desk, thus supporting broader
mobile scenarios. Secondly, SoundScroll employs low-profile, non-
camera-based sensors, making it more suitable for integration into
wearable devices. Lastly, while Anywhere Surface Touch introduces
a delay in discrete gesture recognition (i.e., feedback comes after
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the gesture ends) that can negatively affect performance in tasks
such as scrolling, SoundScroll continuously updates finger contact
state and speed every 20 ms, enabling more fluid and interactive
control. AO-Finger [55] also noted the significance of fine-grained
UI control by enabling continuous thumb swipe tracking using a
single hand. However, its focus is primarily on thumb-to-finger
touch interactions, without considering interactions with external
surfaces. Moreover, AO-Finger relies solely on an on-skin micro-
phone (stethoscope) for detecting finger contact. They noted that
motion artifacts, such as tendon movements when a finger moves
without touching, affect the accuracy of contact recognition. In
contrast, SoundScroll incorporates an additional in-air microphone,
which potentially helps address motion artifacts related to finger
movements that occur without actual contact. Furthermore, Sound-
Scroll not only detects contact but also predicts fingertip motion
speed with a single model, enhancing interactions with features
like inertial scrolling.

3 METHODS
When a finger slides over a surface, vibration is induced by the
friction interaction as the finger traces grooves on textures. This
vibration will propagate through the skin, the touched surface,
and air. While capturing vibration by instrumenting the surface
is effective, it is not suitable for wearable applications. Thus, we
leverage the other two path’s vibrations captured by on-skin or
in-air microphones. The past work has shown the relationship of
acoustic signatures to contact state or surface properties [33, 48].
SoundScroll employs passive acoustic sensing using two wrist-
worn microphones to capture this friction-induced vibration. The
captured friction sound profile shows different powers, frequency
ranges, and resonance depending on finger contact interactions as
shown in Figure 1. We take a data-driven approach to predict a
fingertip sliding state using the sensors on the wrist.

3.1 Sensor Positions
To test the impact of on-skin microphone positions, we conducted a
pilot study with one of the authors. For ground-truth finger contact
and sliding speed collection, we used the Sensel Morph touchpad.
We placed the Sonion Voice Pick-Up (VPU) contact microphone to
four candidate positions on the wrist: palmar, dorsal, radial, and
ulnar sides. For the palmar side, a microphone was located around
the flexor tendon, as reported in the literature for its effectiveness
to capture the vibration signal propagated from a fingerpad [4, 55].
For the ulnar side, a sensor was placed on the bone to see vibration
properties propagating through the bone [13].

We evaluated the performance of each on-skin microphone posi-
tion with the same data collection procedures and metrics in the
main study but only on one texture (; a bare touchpad) and with
one of authors. In total, 480 sliding instances (4 directions × 10
trials × 2 speeds × 6 re-worn sessions containing two arm postures)
for each comparison condition were collected. We compared each
microphone position in a leave-one-session-out cross-validation
scheme trained on ExtraTreesClassifier [20] with default parame-
ters of Python Scikit Learn. The result shows that a VPU on the
palmar side produces the highest accuracy among the four locations

Figure 2: Results comparing contact state estimation perfor-
mance on four sensor worn location (left) and frequency
range (right).

as shown in Figure 2 left. This result also aligns with prior literature
using a stethoscope microphone [4, 55].

3.2 Frequency Range
In this pilot study, we find the frequency range that largely con-
tributes to contact state estimation. For the in-air microphone, we
used the SPH8878LR5H-1 Analog MEMS Microphone. This micro-
phone is sensitive to the frequency range from 7 Hz to 36 kHz.
However, we could still observe the friction sound up to around
55 kHz and used the full range (up to 96 kHz) for analysis. For
reference purposes, we also set up an ultrasonic microphone that
can reliably capture sound up to 70 kHz. For the on-skin micro-
phone, our VPU exceeds the necessary range (up to 10 kHz) for
capturing vibrations transmitted through the human body (up to
around 5 kHz [47, 57]), thus we conducted this study only for an
in-air microphone.

We evaluated the performance of each on-skin microphone posi-
tion with the same procedures in the Sensor Position pilot study.
We conducted an ablation study with six frequency ranges, from
0 Hz to 3, 10, 20, 50, 70, and 96 kHz. Subsequently, we trained a
machine learning model (ExtraTreesClassifier) using each of these
low-pass filtered sound spectrograms. The result shows that fre-
quency ranges over 30 kHz yield a similar level of performance but
cutting off lower than 30 kHz makes a large accuracy drop (Figure 2
right). This indicates that SPH8878LR5H-1 with sensitivity up to 36
kHz would be sufficient for our finger contact sensing prototype.

3.3 Wristband Hardware
The SoundScroll prototype is shown in Figure 3. The Sonion Voice
Pick-Up (VPU) bone sensor [43] and SPH8878LR5H-1 breakout
is placed on the palmar wrist. The wristband additionally has an
Adafruit 9-DOF orientation IMU (BNO08) with Sparkfun Thing Plus
ESP32Microcontroller. This is only used as a benchmark to compare
IMU’s kinematics-based baseline with our friction-sound approach
later in our user study. This breakout provides the orientation of
the sensor and linear acceleration (without gravity), along with
acceleration and angular acceleration at 100 Hz of sampling rate.

Recognizing the vital importance of ensuring reliable contact
between the VPU sensor and the wrist, the VPU sensor is elevated
by affixing a small rubber element. The Velcro enables adjustment
of the wristband to accommodate wrists of various radii and ensures
optimal contact conditions.
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Figure 3: A SoundScroll proof-of-concept wristband.

3.4 Data Processing and Deep Learning
SoundScroll captures the passive acoustics naturally induced by
the user’s sliding interactions on the surface. Our system employs
a dual-microphone setup to reject the noise of each sensor. The
on-skin microphone is sensitive to vibrations ranging from 150 Hz
to 4 kHz, capturing low to mid-range frequencies directly from skin
contact. Meanwhile, the in-air microphone is designed to pick up
friction sounds in a higher frequency range, from 2 kHz to 60 kHz.
Each audio signal is converted into the frequency domain to extract
better features. We used the short-time Fourier transform (STFT)
to convert the audio signals into a spectrogram. To achieve better
spectrogram resolution, we use different STFT window sizes for
each audio signal. For the on-skin microphone’s audio, STFT takes a
window size of 2048 with 384 hop length. For an in-air microphone,
a smaller window size of 512 is used with the same hop length.

We use a single deep learning model to perform two tasks, es-
timating both finger sliding state and speed. The model uses a
three-layer unidirectional Long short-term memory (LSTM) in-
corporating 64 hidden states and a 0.5 dropout rate. The audio
representation from this LSTM is linearly transformed into a con-
tact state classification and speed regression. The model utilizes
Cross Entropy loss for contact detection and Mean Squared Error
(MSE) loss for speed estimation. The summation of two losses is
then used to update the weights. In training, the model takes a
sound spectrogram as an input and the data undergoes augmen-
tation through a 50-overlapping window. The batch size is 64 and
weight updates are performed using the Adam optimizer with a
learning rate of 0.0003. An early stopping condition is implemented,
triggered when the loss improvement is smaller than 0.0001 over
10 epochs.

3.5 Post processing
We apply a filter to smooth the output contact detection. Our model
output intermittently yields oscillatory predictions between touch-
down and touch-up within a span of a fewmilliseconds. As this case
rarely happens in human scrolling behavior, we have implemented
a filtering mechanism, effectively smoothing out the prediction
results. We take the recent 20 ms predictions to check the abnor-
mality. If the predicted contact state is the same across 20 ms or
only one state change is observed, our system immediately uses
this output for interaction. If there is more than one contact-state
change within 20 ms windows, our algorithm smooths this contact

Figure 4: The sliding finger’s contact state classification re-
sults per participant. The blue bar represents the classifica-
tion result of the raw SoundScroll output, while the green
bar is the result compensating for a 20 ms offset.

prediction output. The past 50 ms predictions are used to calcu-
late the "stable" contact state and update new predictions. This
smoothing algorithm maintains a prediction rate of 375 Hz when
the output is stable, and it remains fast at 50 Hz even in abnormal
results.

4 EVALUATION
The study aims to evaluate three aspects. We examine the capability
of friction sound for (1) reliable and rapid touch sensing, (2) in
different arm postures and (3) touching surfaces. We recruited 11
participants (mean age 27.4, std 2.55, min 25, max 32; two identified
as female, ten as male) for the approximately 40-minute user study.

4.1 Data Collection Apparatus
For ground-truth finger touch and sliding speed collection, we used
the Sensel Morph touchpad [27]. This touchpad has been used for
reliable ground truth systems in prior work [9, 10, 39]. The touchpad
is capable of sensing with overlaid layers [28], allowing us to test
four different surface material options during data collection. Two
audio input channels (on-skin and in-air) were collected over a
cable with a 3.5 mm stereo headphone jack to the MOTU 1248
audio interface and sampled at 192 kHz. The acceleration, gyro, and
absolute orientation values were read with a microcontroller and
streamed over a USB-C cable to a laptop.

To cover diverse contact surface materials, four surfaces were
used in data collection: denim, bare touchpad (polymer), paper,
and cellulose tape. These materials are chosen to reflect the actual
interaction scenarios that users could encounter, such as jeans and
many fabrics, paper books, or glass tables or doors, etc.

The user study data was collected under two arm postures, an
arm resting on the desk and floating. In each case, the slidingmotion
generally pivoted at either the wrist or elbow, which generates
different kinematic motions for motion sensors at the wrist. This
data collection condition is for comparing two prediction results
from friction sound and the traditional motion sensor (in this study,
IMU) approaches, respectively.

The data collection was done in an open office space with nu-
merous people present. We did not specifically create artificial
noise nor discourage any naturally generated noises. Therefore, the
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dataset we used for training and evaluation involves participants’
and any others’ chatting, vacuuming, mechanical keyboard typing,
door/drawer movements, coffee grinding, handling plastic bags,
foot stepping, etc. This was intended to incorporate natural envi-
ronmental noise into the study, however, there was no controlled
environment in this study where noise levels were controlled.

4.2 Procedure
The participant wears a wristband and slides the finger on the
touchpad to scroll through a list on the screen. The task is simi-
lar to those used in 1-dimensional Fitts’ law studies, specifically
involving aiming the target element in the list towards a cursor
fixed in the middle of the screen. The physical finger displacement
on the touchpad was linearly mapped to the visual’s movement
and the visuals were continuously updated. The list contains 50
elements and the target location is randomly selected among 50
elements in each selection trial. A session contains combinations of
three target sizes (small, medium, large) and four scroll directions
(up, down, right, and left). Four surface materials were located on
the touchpad in randomized order. After completion of the task
under target sizes and scroll direction combinations, a study in-
structor changed the surface materials on the touchpad by applying
removable tape between the touchpad and the material. The par-
ticipant first completed three sessions while resting their arm on
the desk. After that, they completed the other three sessions while
hovering their arm over the desk. To add a variation of wrist-worn
location, a participant took off and re-donned the wristband after
the completion of each session.

5 RESULTS
In total, participants completed 3168 scrolling tasks (11 participants
× 4 surface materials × 2 arm postures × 3 target sizes × 4 scroll
directions × 3 re-worn sessions). This process yields 6,034,992 data
points, with each point representing 2 ms chunks. The collected
data spans 3.35 hours of finger-sliding instances.

5.1 Contact State Detection
We evaluated SoundScroll’s contact state detection model in a leave-
one-participant-out (LOPO) cross-validation scheme. We used data
from ten participants to train a model and evaluated the trained
model on one left-out participant’s data. This yields eleven models
and we averaged the results from each. The contact state detection
was evaluated every 2 ms over 3.35 hours of data, and SoundScroll
achieves 89.2% of contact state detection accuracy.

We further analyze data to contextualize the result. Most of
these detection errors are from a slight offset between the label
and prediction, which is shown as a delay (shown in Figure 1). In
drag-and-drop tasks, humans typically do not perceive delays when
they are less than 33 ms for indirect input [6, 7], remains stable with
direct input delays under 25 ms [15]. Thus, we set a 20 ms window
as an acceptable threshold for usability. With this compensation,
the contact state detection accuracy increases to 93.3% overall and
exceeds 90% for each participant (Figure 4). In the rest of the result
section, we describe the accuracy with 20 ms compensated.

Figure 5: The sliding finger’s contact state classification re-
sults per surface. The blue bar represents the classification
result of the raw SoundScroll output, while the green bar is
the result compensating for a 20 ms offset.

5.2 Dual-Microphone Impact
To evaluate the benefit of using a dual-microphone setup, we con-
ducted an ablation study by training the model with each micro-
phone’s signals and analyzed its contribution. When trained only
on the on-skin microphone’s signal, the accuracy for detecting con-
tact was 85.1%. Training with solely the in-air microphone resulted
in a contact state detection accuracy of 92.4%. However, employ-
ing both microphones simultaneously improved the contact state
detection accuracy to 93.3%. This result shows dual microphone
configuration shows an improvement compared to the sole on-skin
microphone configuration.

5.3 Surface Material Impact
We evaluated our approach on four surface materials, denim, paper,
polymer, and plastic. The summarized result is shown in the Fig-
ure 5. We conducted our analysis using the leave-one-material-out
method. When tested on denim as the surface material, we achieved
a contact detection accuracy of 93.1%. For paper, the contact detec-
tion accuracy is 95.3%, which is the highest accuracy among the
four surfaces. When testing on polymer, the touch detection accu-
racy reaches 94.0%. Finally, on surface material plastic, we attained
a contact detection accuracy of 89.3%. The plastic surface yields the
lowest accuracy as the surface makes a faint friction sound.

5.4 Arm Posture Impact
We analyzed results with the leave-one-posture-out method on all
participant data. This led a data split of half the dataset for training
and testing. Figure 6 illustrates the varying impact of arm posture
on the contact state detection accuracy. Even though the training
data does not include the data from other arm postures, SoundScroll
shows equally accurate contact state detection accuracy for arm
pivoting (93.0%) and wrist pivoting (93.5%).

5.5 Comparison to Kinematics-based Approach
For this specific analysis, we additionally trained a model under
the IMU approach and compared its performance to SoundScroll’s
friction sound-based approach. The same network pipeline is used,
yet the only difference is the input size, which is a combination
of IMU’s orientation, acceleration, angular acceleration, and linear
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Figure 6: The sliding finger’s contact state classification re-
sults comparing friction-sound (SoundScroll) and motion-
based approaches. Each model was trained under two differ-
ent arm postures. The blue bar represents the classification
result of the raw SoundScroll output, while the green bar is
the result compensating for a 20 ms offset.

acceleration. The IMU data is interpolated to 375 Hz to match the
SoundScroll’s prediction rate. As shown in Figure 6, the contact
state detection accuracy is around 20% lower than the friction based
approach.

6 DISCUSSION
Fingertip speed prediction. Knowing the fingertip’s speed in
scrolling is useful for richer interaction, particularly in applications
like inertial scrolling. Thus, we conducted an additional analysis of
how the finger vibration might provide relevant information. The
same study data introduced in Section 4 was used in the training
and testing of speed estimation. The speed label was calculated
from the position data collected from the same ground-truth touch-
pad hardware. Similar to finger contact state detection evaluation,
we used the LOPO scheme to evaluate speed estimation accuracy.
Note, here we designed our model to be multi-task which estimates
finger contact state and speed simultaneously. The mean absolute
error (MAE) is 47.20 mm/s (SD=86.87), while the label speed is 96.7
mm/s on average (SD=169.6). SoundScroll achieved fairly accurate
fingertip speed estimation and an example speed estimation result
is illustrated in Figure 1.
Friction sound approach v.s. Kinematics approach. One com-
mon method for surface input is the kinematic approach, which
involves installing motion sensors (e.g., IMUs) on the finger. This
technique leverages the constraints of hand ergonomics to estimate
the finger’s state. However, this approach may not be suitable for
wristband form factors, as resting the wrist on a desk makes it
challenging to capture motions accurately. SoundScroll leverages
the nature of the sound-based approach, where the audio signals
are directly influenced by the interaction between the fingerpad
and the surface, rather than by ergonomics. The friction-sound
approach could potentially reduce the required amount of training
data compared to IMU approaches, as it does not necessitate data
collection in various arm posture conditions.
SystemDelay.Our system takes a new spectrogram input for every
incoming set of 512 audio samples. This enables us to achieve 375 Hz
(= 192000 Hz sampling rate / 512 window size; account for 2.7 ms)
of touch and speed prediction rate. The preprocessing (STFT) takes

0.2 ms for the corresponding window size of sound signals. The
inference time of our model in Apple Core ML is 2.0 ms on an Apple
Macbook Pro with an M1 processor. These are roughly faster than
the input stream time of 2.7 ms. The input device’s system delay
affects human perception (∼5-10 ms for direct input [30]; ∼33 ms
for indirect input [6, 7]) and selection performance (25 ms for direct
input [15]; 75-100 ms for indirect input [25, 36]). SoundScroll’s
update rate can be as low as 2.7 ms, which is advantageous in
mitigating the delay effect when applying smoothing filters.
SoundScroll and scrolling. SoundScroll is especially useful when
the interaction includes repeatedmotions in different directions. For
example, when users scroll a long list with clutching, they perform
swipes in one direction to scroll and move the finger back to the
original position in the opposite direction and repeat. The delayed
or inaccurate detection of the contact state creates unexpected list
rewinding at the end of the scroll as the finger returning is captured
as an unfinished input. SoundScroll’s fast prediction can resolve
this usability issue.
Toward Full Functionality. SoundScroll can be combined with
other modalities to achieve a general-purpose 2-dimensional in-
put device. Two more modules would be desired — detecting taps
and tracking finger motion direction. The primary limitation of
SoundScroll is that it detects the contact state of a finger in motion.
SoundScoll itself would be challenging to support certain user in-
puts such as long-press. We envision combining the tap-sensing
module with SoundScroll so that the system enhances robustness
and provides full functionalities. Several earlier works [26, 44] al-
ready demonstrated tap interaction by embedding IMU or other
acoustic sensors. Those approaches can also be integrated with
SoundScroll. Detecting the finger sliding direction from the wrist
could be more challenging. A combination of IMU, infrared, optical
flow, or depth sensors can be employed to estimate the distance
change of the back of the hand from the sensor and determine
the moving directions. Based on studies like Back-Hand-Pose [53],
which can estimate full hand pose by observing only a part of
the back of the hand, it may be feasible to determine the direc-
tion of the moving finger. Nonetheless, SoundScroll simplifies the
requirements to classifying movement directions instead of estimat-
ing both precise displacement and direction, making the challenge
more manageable. Lastly, our studies were focused on scrolling
interactions. While the principle may remain the same to detect a
moving finger’s contact state in various applications like drag-and-
drop, two-dimensional pointing, and drawing, further thorough
evaluations and system implementation are remaining tasks for
more advanced interactions.

7 CONCLUSION
We have presented our work on SoundScroll, a wristband input
solution offloaded from the headset and leveraging finger friction
sound to detect the sliding finger’s contact state and speed. In
our user study, we demonstrated that our system can provide fast
detection of contact state every 20 ms with a high accuracy of
93.3%. Along with contact detection. SoundScroll also provides
rich information on finger motion with speed regression using a
single model. We showed the sound-based approach is a suitable
wrist-worn solution compared to the IMU-based approach.



SoundScroll ISWC ’24, October 5–9, 2024, Melbourne, VIC, Australia

REFERENCES
[1] William Buxton et al. 1990. A three-state model of graphical input. In Human-

computer interaction-INTERACT, Vol. 90. Citeseer, 449–456.
[2] Ke-Yu Chen, Shwetak N. Patel, and Sean Keller. 2016. Finexus: Tracking Precise

Motions of Multiple Fingertips Using Magnetic Sensing. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems (San Jose, California,
USA) (CHI ’16). Association for Computing Machinery, New York, NY, USA,
1504–1514. https://doi.org/10.1145/2858036.2858125

[3] Yi Fei Cheng, Tiffany Luong, Andreas Rene Fender, Paul Streli, and Christian
Holz. 2022. ComforTable User Interfaces: Surfaces Reduce Input Error, Time,
and Exertion for Tabletop and Mid-air User Interfaces. In 2022 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR). 150–159. https://doi.org/
10.1109/ISMAR55827.2022.00029

[4] Benoit Delhaye, Vincent Hayward, Philippe Lefèvre, and Jean-Louis Thonnard.
2012. Texture-induced vibrations in the forearm during tactile exploration. Fron-
tiers in behavioral neuroscience 6 (2012), 37. https://www.frontiersin.org/articles/
10.3389/fnbeh.2012.00037/full

[5] Nathan Devrio and Chris Harrison. 2022. DiscoBand: Multiview Depth-Sensing
Smartwatch Strap for Hand, Body and Environment Tracking. In Proceedings
of the 35th Annual ACM Symposium on User Interface Software and Technology
(Bend, OR, USA) (UIST ’22). Association for Computing Machinery, New York,
NY, USA, Article 56, 13 pages. https://doi.org/10.1145/3526113.3545634

[6] S.R. Ellis, F. Breant, B. Manges, R. Jacoby, and B.D. Adelstein. 1997. Factors
influencing operator interaction with virtual objects viewed via head-mounted
see-through displays: viewing conditions and rendering latency. In Proceedings
of IEEE 1997 Annual International Symposium on Virtual Reality. 138–145. https:
//doi.org/10.1109/VRAIS.1997.583063

[7] Stephen R Ellis, Mark J Young, Bernard D Adelstein, and Sheryl M Ehrlich. 1999.
Discrimination of changes of latency during voluntary hand movement of virtual
objects. In Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, Vol. 43. SAGE Publications Sage CA: Los Angeles, CA, 1182–1186.

[8] Jun Gong, Aakar Gupta, and Hrvoje Benko. 2020. Acustico: Surface Tap Detection
and Localization using Wrist-based Acoustic TDOA Sensing. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology (Virtual
Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY,
USA, 406–419. https://doi.org/10.1145/3379337.3415901

[9] Patrick Grady, Jeremy A Collins, Chengcheng Tang, Christopher D Twigg, Kunal
Aneja, James Hays, and Charles C Kemp. 2024. PressureVision++: Estimating
Fingertip Pressure from Diverse RGB Images. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 8698–8708.

[10] Patrick Grady, Chengcheng Tang, Samarth Brahmbhatt, Christopher D Twigg,
ChengdeWan, James Hays, and Charles C Kemp. 2022. Pressurevision: Estimating
hand pressure from a single rgb image. In European Conference on Computer Vision.
Springer, 328–345.

[11] Yizheng Gu, Chun Yu, Zhipeng Li, Weiqi Li, Shuchang Xu, Xiaoying Wei, and
Yuanchun Shi. 2019. Accurate and Low-Latency Sensing of Touch Contact on
Any Surface with Finger-Worn IMU Sensor. In Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology (New Orleans, LA,
USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA,
1059–1070. https://doi.org/10.1145/3332165.3347947

[12] Shangchen Han, Beibei Liu, Randi Cabezas, Christopher D. Twigg, Peizhao Zhang,
Jeff Petkau, Tsz-Ho Yu, Chun-Jung Tai, Muzaffer Akbay, Zheng Wang, Asaf
Nitzan, Gang Dong, Yuting Ye, Lingling Tao, Chengde Wan, and Robert Wang.
2020. MEgATrack: Monochrome Egocentric Articulated Hand-Tracking for
Virtual Reality. ACM Trans. Graph. 39, 4, Article 87 (aug 2020), 13 pages. https:
//doi.org/10.1145/3386569.3392452

[13] Chris Harrison, Desney Tan, and Dan Morris. 2010. Skinput: Appropriating the
Body as an Input Surface. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). Association for
Computing Machinery, New York, NY, USA, 453–462. https://doi.org/10.1145/
1753326.1753394

[14] Fang Hu, Peng He, Songlin Xu, Yin Li, and Cheng Zhang. 2020. FingerTrak:
Continuous 3DHand Pose Tracking by Deep Learning Hand Silhouettes Captured
by Miniature Thermal Cameras on Wrist. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 4, 2, Article 71 (jun 2020), 24 pages. https://doi.org/10.1145/
3397306

[15] Ricardo Jota, Albert Ng, Paul Dietz, and Daniel Wigdor. 2013. How Fast is Fast
Enough? A Study of the Effects of Latency in Direct-Touch Pointing Tasks. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Paris, France) (CHI ’13). Association for Computing Machinery, New York, NY,
USA, 2291–2300. https://doi.org/10.1145/2470654.2481317

[16] Wolf Kienzle and Ken Hinckley. 2014. LightRing: Always-Available 2D Input on
Any Surface. In Proceedings of the 27th Annual ACM Symposium on User Interface
Software and Technology (Honolulu, Hawaii, USA) (UIST ’14). Association for
Computing Machinery, New York, NY, USA, 157–160. https://doi.org/10.1145/
2642918.2647376

[17] Wolf Kienzle, Eric Whitmire, Chris Rittaler, and Hrvoje Benko. 2021. ElectroRing:
Subtle Pinch and Touch Detection with a Ring. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21).
Association for Computing Machinery, New York, NY, USA, Article 3, 12 pages.
https://doi.org/10.1145/3411764.3445094

[18] Daehwa Kim and Chris Harrison. 2022. EtherPose: Continuous Hand Pose Track-
ing with Wrist-Worn Antenna Impedance Characteristic Sensing. In Proceedings
of the 35th Annual ACM Symposium on User Interface Software and Technology
(Bend, OR, USA) (UIST ’22). Association for Computing Machinery, New York,
NY, USA, Article 58, 12 pages. https://doi.org/10.1145/3526113.3545665

[19] David Kim, Otmar Hilliges, Shahram Izadi, Alex D. Butler, Jiawen Chen, Iason
Oikonomidis, and Patrick Olivier. 2012. Digits: freehand 3D interactions any-
where using a wrist-worn gloveless sensor. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology (Cambridge, Massachusetts,
USA) (UIST ’12). Association for Computing Machinery, New York, NY, USA,
167–176. https://doi.org/10.1145/2380116.2380139

[20] Scikit Learn. 2023. sklearn.ensemble.ExtraTreesClassifier. (2023).
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
ExtraTreesClassifier.html

[21] Chen Liang, Xutong Wang, Zisu Li, Chi Hsia, Mingming Fan, Chun Yu, and
Yuanchun Shi. 2023. ShadowTouch: Enabling Free-Form Touch-Based Hand-
to-Surface Interaction with Wrist-Mounted Illuminant by Shadow Projection.
In Proceedings of the 36th Annual ACM Symposium on User Interface Software
and Technology (<conf-loc>, <city>San Francisco</city>, <state>CA</state>,
<country>USA</country>, </conf-loc>) (UIST ’23). Association for Computing
Machinery, New York, NY, USA, Article 27, 14 pages. https://doi.org/10.1145/
3586183.3606785

[22] Chen Liang, Chun Yu, Yue Qin, Yuntao Wang, and Yuanchun Shi. 2021. DualRing:
Enabling Subtle and Expressive Hand Interaction with Dual IMU Rings. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 3, Article 115 (sep 2021),
27 pages. https://doi.org/10.1145/3478114

[23] Robert W. Lindeman, John L. Sibert, and James K. Hahn. 1999. Towards Usable
VR: An Empirical Study of User Interfaces for Immersive Virtual Environments.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Pittsburgh, Pennsylvania, USA) (CHI ’99). Association for Computing Machinery,
New York, NY, USA, 64–71. https://doi.org/10.1145/302979.302995

[24] Yilin Liu, Shijia Zhang, and Mahanth Gowda. 2021. NeuroPose: 3D Hand Pose
Tracking using EMGWearables. In Proceedings of the Web Conference 2021 (Ljubl-
jana, Slovenia) (WWW ’21). Association for Computing Machinery, New York,
NY, USA, 1471–1482. https://doi.org/10.1145/3442381.3449890

[25] I. Scott MacKenzie and Colin Ware. 1993. Lag as a Determinant of Human
Performance in Interactive Systems. In Proceedings of the INTERACT ’93 and
CHI ’93 Conference on Human Factors in Computing Systems (Amsterdam, The
Netherlands) (CHI ’93). Association for Computing Machinery, New York, NY,
USA, 488–493. https://doi.org/10.1145/169059.169431

[26] Manuel Meier, Paul Streli, Andreas Fender, and Christian Holz. 2021. TapID:
Rapid Touch Interaction in Virtual Reality using Wearable Sensing. In 2021 IEEE
Virtual Reality and 3D User Interfaces (VR). 519–528. https://doi.org/10.1109/
VR50410.2021.00076

[27] Morph. 2023. Sensel Touchpad. (2023). https://sensel.com/
[28] Morph. 2024. Editing an Overlay. (2024). https://guide.sensel.com/app/#editing-

an-overlay
[29] Adiyan Mujibiya, Xiang Cao, Desney S. Tan, Dan Morris, Shwetak N. Patel, and

Jun Rekimoto. 2013. The sound of touch: on-body touch and gesture sensing
based on transdermal ultrasound propagation. In Proceedings of the 2013 ACM
International Conference on Interactive Tabletops and Surfaces (St. Andrews, Scot-
land, United Kingdom) (ITS ’13). Association for Computing Machinery, New
York, NY, USA, 189–198. https://doi.org/10.1145/2512349.2512821

[30] Albert Ng, Julian Lepinski, Daniel Wigdor, Steven Sanders, and Paul Dietz. 2012.
Designing for Low-Latency Direct-Touch Input. In Proceedings of the 25th Annual
ACM Symposium on User Interface Software and Technology (Cambridge, Mas-
sachusetts, USA) (UIST ’12). Association for Computing Machinery, New York,
NY, USA, 453–464. https://doi.org/10.1145/2380116.2380174

[31] Anh Nguyen and Amy Banic. 2014. 3DTouch: A wearable 3D input device with
an optical sensor and a 9-DOF inertial measurement unit. CoRR abs/1406.5581
(2014). arXiv:1406.5581 http://arxiv.org/abs/1406.5581

[32] Takehiro Niikura, Yoshihiro Watanabe, and Masatoshi Ishikawa. 2014. Anywhere
Surface Touch: Utilizing Any Surface as an Input Area. In Proceedings of the 5th
Augmented Human International Conference (Kobe, Japan) (AH ’14). Association
for Computing Machinery, New York, NY, USA, Article 39, 8 pages. https:
//doi.org/10.1145/2582051.2582090

[33] James F. O’Brien, Chen Shen, and Christine M. Gatchalian. 2002. Synthesiz-
ing Sounds from Rigid-Body Simulations. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (San Antonio, Texas)
(SCA ’02). Association for Computing Machinery, New York, NY, USA, 175–181.
https://doi.org/10.1145/545261.545290

[34] Ju Young Oh, Jun Lee, Joong Ho Lee, and Ji Hyung Park. 2017. Anywhere-
touch: Finger tracking method on arbitrary surface using nailed-mounted imu

https://doi.org/10.1145/2858036.2858125
https://doi.org/10.1109/ISMAR55827.2022.00029
https://doi.org/10.1109/ISMAR55827.2022.00029
https://www.frontiersin.org/articles/10.3389/fnbeh.2012.00037/full
https://www.frontiersin.org/articles/10.3389/fnbeh.2012.00037/full
https://doi.org/10.1145/3526113.3545634
https://doi.org/10.1109/VRAIS.1997.583063
https://doi.org/10.1109/VRAIS.1997.583063
https://doi.org/10.1145/3379337.3415901
https://doi.org/10.1145/3332165.3347947
https://doi.org/10.1145/3386569.3392452
https://doi.org/10.1145/3386569.3392452
https://doi.org/10.1145/1753326.1753394
https://doi.org/10.1145/1753326.1753394
https://doi.org/10.1145/3397306
https://doi.org/10.1145/3397306
https://doi.org/10.1145/2470654.2481317
https://doi.org/10.1145/2642918.2647376
https://doi.org/10.1145/2642918.2647376
https://doi.org/10.1145/3411764.3445094
https://doi.org/10.1145/3526113.3545665
https://doi.org/10.1145/2380116.2380139
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://doi.org/10.1145/3586183.3606785
https://doi.org/10.1145/3586183.3606785
https://doi.org/10.1145/3478114
https://doi.org/10.1145/302979.302995
https://doi.org/10.1145/3442381.3449890
https://doi.org/10.1145/169059.169431
https://doi.org/10.1109/VR50410.2021.00076
https://doi.org/10.1109/VR50410.2021.00076
https://sensel.com/
https://guide.sensel.com/app/#editing-an-overlay
https://guide.sensel.com/app/#editing-an-overlay
https://doi.org/10.1145/2512349.2512821
https://doi.org/10.1145/2380116.2380174
https://arxiv.org/abs/1406.5581
http://arxiv.org/abs/1406.5581
https://doi.org/10.1145/2582051.2582090
https://doi.org/10.1145/2582051.2582090
https://doi.org/10.1145/545261.545290


ISWC ’24, October 5–9, 2024, Melbourne, VIC, Australia Daehwa Kim, Eric Whitmire, Roger Boldu, Wolf Kienzle, & Hrvoje Benko

for mobile hmd. In HCI International 2017–Posters’ Extended Abstracts: 19th Inter-
national Conference, HCI International 2017, Vancouver, BC, Canada, July 9–14,
2017, Proceedings, Part I 19. Springer, 185–191.

[35] Farshid Salemi Parizi, Eric Whitmire, and Shwetak Patel. 2020. AuraRing: Precise
Electromagnetic Finger Tracking. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 3, 4, Article 150 (sep 2020), 28 pages. https://doi.org/10.1145/3369831

[36] Andriy Pavlovych and Wolfgang Stuerzlinger. 2011. Target following perfor-
mance in the presence of latency, jitter, and signal dropouts. In Proceedings of
Graphics Interface 2011. 33–40.

[37] Gustavo Thebit Pfeiffer, Ricardo Guerra Marroquim, and Antonio Alberto Fer-
nandes de Oliveira. 2014. WebcamPaperPen: A Low-Cost Graphics Tablet.
In 2014 27th SIBGRAPI Conference on Graphics, Patterns and Images. 87–94.
https://doi.org/10.1109/SIBGRAPI.2014.54

[38] Helena Roeber, John Bacus, and Carlo Tomasi. 2003. Typing in thin air: the canesta
projection keyboard - a newmethod of interaction with electronic devices. In CHI
’03 Extended Abstracts on Human Factors in Computing Systems (Ft. Lauderdale,
Florida, USA) (CHI EA ’03). Association for Computing Machinery, New York,
NY, USA, 712–713. https://doi.org/10.1145/765891.765944

[39] Xiyuan Shen, Chun Yu, XutongWang, Chen Liang, Haozhan Chen, and Yuanchun
Shi. 2-24. MouseRing: Always-available Touchpad Interaction with IMU Rings. In
Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems.

[40] Yilei Shi, Haimo Zhang, Kaixing Zhao, Jiashuo Cao, Mengmeng Sun, and Suranga
Nanayakkara. 2020. Ready, Steady, Touch! Sensing Physical Contact with a
Finger-Mounted IMU. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 2,
Article 59 (jun 2020), 25 pages. https://doi.org/10.1145/3397309

[41] Adalberto L. Simeone, Eduardo Velloso, and Hans Gellersen. 2015. Substitutional
Reality: Using the Physical Environment to Design Virtual Reality Experiences.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (Seoul, Republic of Korea) (CHI ’15). Association for Computing Machin-
ery, New York, NY, USA, 3307–3316. https://doi.org/10.1145/2702123.2702389

[42] Anton R Sobinov and Sliman J Bensmaia. 2021. The neural mechanisms of manual
dexterity. Nature Reviews Neuroscience 22, 12 (2021), 741–757.

[43] Sonion. 2023. VOICE PICK UP BONE SENSOR (VPU). (2023). https:
//www.sonion.com/hearing/bone-conduction-sensors-and-actuators/vpu-
voice-pick-up-sensor/.

[44] Paul Streli, Jiaxi Jiang, Andreas Rene Fender, Manuel Meier, Hugo Romat, and
Christian Holz. 2022. TapType: Ten-Finger Text Entry on Everyday Surfaces
via Bayesian Inference. In Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association
for Computing Machinery, New York, NY, USA, Article 497, 16 pages. https:
//doi.org/10.1145/3491102.3501878

[45] Paul Streli, Jiaxi Jiang, Juliete Rossie, and Christian Holz. 2023. Structured Light
Speckle: Joint Ego-Centric Depth Estimation and Low-Latency Contact Detection
via Remote Vibrometry. In Proceedings of the 36th Annual ACM Symposium on
User Interface Software and Technology (<conf-loc>, <city>San Francisco</city>,
<state>CA</state>, <country>USA</country>, </conf-loc>) (UIST ’23). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 26, 12 pages.
https://doi.org/10.1145/3586183.3606749

[46] Paul Streli, Jiaxi Jiang, Juliete Rossie, and Christian Holz. 2023. Structured Light
Speckle: Joint Ego-Centric Depth Estimation and Low-Latency Contact Detection
via Remote Vibrometry. In Proceedings of the 36th Annual ACM Symposium on
User Interface Software and Technology (San Francisco, CA, USA) (UIST ’23).
Association for Computing Machinery, New York, NY, USA, Article 26, 12 pages.
https://doi.org/10.1145/3586183.3606749

[47] Sarah Elizabeth Tomlinson. 2009. Understanding the friction between human
fingers and contacting surfaces. Ph. D. Dissertation. University of Sheffield.

[48] Kees van den Doel, Paul G. Kry, and Dinesh K. Pai. 2001. FoleyAutomatic:
Physically-Based Sound Effects for Interactive Simulation and Animation. In

Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’01). Association for Computing Machinery, New York,
NY, USA, 537–544. https://doi.org/10.1145/383259.383322

[49] Radu-Daniel Vatavu and Laura-Bianca Bilius. 2021. GestuRING: A Web-Based
Tool for Designing Gesture Input with Rings, Ring-Like, and Ring-Ready Devices.
In The 34th Annual ACM Symposium on User Interface Software and Technology
(Virtual Event, USA) (UIST ’21). Association for Computing Machinery, New York,
NY, USA, 710–723. https://doi.org/10.1145/3472749.3474780

[50] Nicolas Villar, Shahram Izadi, Dan Rosenfeld, Hrvoje Benko, John Helmes,
Jonathan Westhues, Steve Hodges, Eyal Ofek, Alex Butler, Xiang Cao, and Billy
Chen. 2009. Mouse 2.0: multi-touch meets the mouse. In Proceedings of the 22nd
Annual ACM Symposium on User Interface Software and Technology (Victoria, BC,
Canada) (UIST ’09). Association for Computing Machinery, New York, NY, USA,
33–42. https://doi.org/10.1145/1622176.1622184

[51] AnandghanWaghmare, Youssef Ben Taleb, Ishan Chatterjee, Arjun Narendra, and
Shwetak Patel. 2023. Z-Ring: Single-Point Bio-Impedance Sensing for Gesture,
Touch, Object and User Recognition. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems (<conf-loc>, <city>Hamburg</city>,
<country>Germany</country>, </conf-loc>) (CHI ’23). Association for Comput-
ing Machinery, New York, NY, USA, Article 150, 18 pages. https://doi.org/10.
1145/3544548.3581422

[52] Dan Wu, Ruiyang Gao, Youwei Zeng, Jinyi Liu, Leye Wang, Tao Gu, and Daqing
Zhang. 2020. FingerDraw: Sub-Wavelength Level Finger Motion Tracking with
WiFi Signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 1, Article
31 (mar 2020), 27 pages. https://doi.org/10.1145/3380981

[53] Erwin Wu, Ye Yuan, Hui-Shyong Yeo, Aaron Quigley, Hideki Koike, and Kris M.
Kitani. 2020. Back-Hand-Pose: 3D Hand Pose Estimation for a Wrist-Worn
Camera via Dorsum Deformation Network. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology (Virtual Event, USA)
(UIST ’20). Association for Computing Machinery, New York, NY, USA, 1147–1160.
https://doi.org/10.1145/3379337.3415897

[54] Robert Xiao, Julia Schwarz, Nick Throm, Andrew D Wilson, and Hrvoje Benko.
2018. MRTouch: Adding touch input to head-mounted mixed reality. IEEE
transactions on visualization and computer graphics 24, 4 (2018), 1653–1660.

[55] Chenhan Xu, Bing Zhou, Gurunandan Krishnan, and Shree Nayar. 2023. AO-
Finger: Hands-Free Fine-Grained Finger Gesture Recognition via Acoustic-Optic
Sensor Fusing. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing
Machinery, New York, NY, USA, Article 306, 14 pages. https://doi.org/10.1145/
3544548.3581264

[56] Xing-Dong Yang, Tovi Grossman, Daniel Wigdor, and George Fitzmaurice. 2012.
Magic Finger: Always-Available Input through Finger Instrumentation. In Proceed-
ings of the 25th Annual ACM Symposium on User Interface Software and Technology
(Cambridge, Massachusetts, USA) (UIST ’12). Association for Computing Machin-
ery, New York, NY, USA, 147–156. https://doi.org/10.1145/2380116.2380137

[57] H. Zahouani, R. Vargiolu, G. Boyer, C. Pailler-Mattei, L. Laquièze, and A. Mavon.
2009. Friction noise of human skin in vivo. Wear 267, 5 (2009), 1274–1280.
https://doi.org/10.1016/j.wear.2009.03.007 17th International Conference onWear
of Materials.

[58] Yang Zhang, Wolf Kienzle, Yanjun Ma, Shiu S. Ng, Hrvoje Benko, and Chris
Harrison. 2019. ActiTouch: Robust TouchDetection for On-Skin AR/VR Interfaces.
In Proceedings of the 32nd Annual ACM Symposium on User Interface Software
and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing
Machinery, New York, NY, USA, 1151–1159. https://doi.org/10.1145/3332165.
3347869

[59] Yuliang Zhao, Xianshou Ren, Chao Lian, Kunyu Han, Liming Xin, and Wen J Li.
2021. Mouse on a Ring: A Mouse Action Scheme Based on IMU and Multi-Level
Decision Algorithm. IEEE Sensors Journal 21, 18 (2021), 20512–20520.

https://doi.org/10.1145/3369831
https://doi.org/10.1109/SIBGRAPI.2014.54
https://doi.org/10.1145/765891.765944
https://doi.org/10.1145/3397309
https://doi.org/10.1145/2702123.2702389
https://www.sonion.com/hearing/bone-conduction-sensors-and-actuators/vpu-voice-pick-up-sensor/.
https://www.sonion.com/hearing/bone-conduction-sensors-and-actuators/vpu-voice-pick-up-sensor/.
https://www.sonion.com/hearing/bone-conduction-sensors-and-actuators/vpu-voice-pick-up-sensor/.
https://doi.org/10.1145/3491102.3501878
https://doi.org/10.1145/3491102.3501878
https://doi.org/10.1145/3586183.3606749
https://doi.org/10.1145/3586183.3606749
https://doi.org/10.1145/383259.383322
https://doi.org/10.1145/3472749.3474780
https://doi.org/10.1145/1622176.1622184
https://doi.org/10.1145/3544548.3581422
https://doi.org/10.1145/3544548.3581422
https://doi.org/10.1145/3380981
https://doi.org/10.1145/3379337.3415897
https://doi.org/10.1145/3544548.3581264
https://doi.org/10.1145/3544548.3581264
https://doi.org/10.1145/2380116.2380137
https://doi.org/10.1016/j.wear.2009.03.007
https://doi.org/10.1145/3332165.3347869
https://doi.org/10.1145/3332165.3347869

	Abstract
	1 Introduction
	2 Related Work
	2.1 Non-Wristband Solutions
	2.2 Wristband Solutions

	3 Methods
	3.1 Sensor Positions
	3.2 Frequency Range
	3.3 Wristband Hardware
	3.4 Data Processing and Deep Learning
	3.5 Post processing

	4 Evaluation
	4.1 Data Collection Apparatus
	4.2 Procedure

	5 Results
	5.1 Contact State Detection
	5.2 Dual-Microphone Impact
	5.3 Surface Material Impact
	5.4 Arm Posture Impact
	5.5 Comparison to Kinematics-based Approach

	6 Discussion
	7 Conclusion
	References

